Second-Hand Mining and Milling Machinery

We claim to be the largest dealers, and have the most complete stock of second-hand mining and milling machinery in the United States. All of our machinery is thoroughly overhauled in our shop before being placed on sale and we guarantee every piece to give the same practical efficiency as new. All kinds of irrigation, mining and milling machinery and supplies. We cannot list all of our machinery but will be pleased to send catalogues on request.

THE S. H. SUPPLY & MACHINERY CO.
1732-50 WAZE STREET
DENVER, COLORADO
Pittsburg.—Leaves in soils or slate.

The brief and incomplete enumeration given above is far from a full indication of the number of important and interesting objects of study which modern science has discovered. The exploration of many strata has been made profitable by their vegetable associations, and it is now well known that the study of fossil plant and animal remains has been productive of much important geological knowledge.

The following brief outline of the stratigraphic succession of the strata of the coal fields of the United States is intended to give a general idea of the stratigraphic relations of the strata and to indicate the nature of the coal deposits.

The coal beds are divided into three groups:

1. The Lower Coal Group, which includes the beds of the Old Red Sandstone and the Lower Coal Measures, and is characterized by the presence of coal beds and the absence of coal seams. The coal beds in this group are usually thin and are often interbedded with sandstones and shales.

2. The Middle Coal Group, which includes the beds of the Carboniferous Series, and is characterized by the presence of coal beds and the absence of coal seams. The coal beds in this group are usually thicker and are often interbedded with sandstones and shales.

3. The Upper Coal Group, which includes the beds of the Permian Series, and is characterized by the presence of coal beds and the absence of coal seams. The coal beds in this group are usually thick and are often interbedded with sandstones and shales.

The following brief outline of the stratigraphic succession of the strata of the coal fields of the United States is intended to give a general idea of the stratigraphic relations of the strata and to indicate the nature of the coal deposits.

The coal beds are divided into three groups:

1. The Lower Coal Group, which includes the beds of the Old Red Sandstone and the Lower Coal Measures, and is characterized by the presence of coal beds and the absence of coal seams. The coal beds in this group are usually thin and are often interbedded with sandstones and shales.

2. The Middle Coal Group, which includes the beds of the Carboniferous Series, and is characterized by the presence of coal beds and the absence of coal seams. The coal beds in this group are usually thicker and are often interbedded with sandstones and shales.

3. The Upper Coal Group, which includes the beds of the Permian Series, and is characterized by the presence of coal beds and the absence of coal seams. The coal beds in this group are usually thick and are often interbedded with sandstones and shales.

The following brief outline of the stratigraphic succession of the strata of the coal fields of the United States is intended to give a general idea of the stratigraphic relations of the strata and to indicate the nature of the coal deposits.

The coal beds are divided into three groups:

1. The Lower Coal Group, which includes the beds of the Old Red Sandstone and the Lower Coal Measures, and is characterized by the presence of coal beds and the absence of coal seams. The coal beds in this group are usually thin and are often interbedded with sandstones and shales.

2. The Middle Coal Group, which includes the beds of the Carboniferous Series, and is characterized by the presence of coal beds and the absence of coal seams. The coal beds in this group are usually thicker and are often interbedded with sandstones and shales.

3. The Upper Coal Group, which includes the beds of the Permian Series, and is characterized by the presence of coal beds and the absence of coal seams. The coal beds in this group are usually thick and are often interbedded with sandstones and shales.

The following brief outline of the stratigraphic succession of the strata of the coal fields of the United States is intended to give a general idea of the stratigraphic relations of the strata and to indicate the nature of the coal deposits.

The coal beds are divided into three groups:

1. The Lower Coal Group, which includes the beds of the Old Red Sandstone and the Lower Coal Measures, and is characterized by the presence of coal beds and the absence of coal seams. The coal beds in this group are usually thin and are often interbedded with sandstones and shales.

2. The Middle Coal Group, which includes the beds of the Carboniferous Series, and is characterized by the presence of coal beds and the absence of coal seams. The coal beds in this group are usually thicker and are often interbedded with sandstones and shales.

3. The Upper Coal Group, which includes the beds of the Permian Series, and is characterized by the presence of coal beds and the absence of coal seams. The coal beds in this group are usually thick and are often interbedded with sandstones and shales.

The following brief outline of the stratigraphic succession of the strata of the coal fields of the United States is intended to give a general idea of the stratigraphic relations of the strata and to indicate the nature of the coal deposits.

The coal beds are divided into three groups:

1. The Lower Coal Group, which includes the beds of the Old Red Sandstone and the Lower Coal Measures, and is characterized by the presence of coal beds and the absence of coal seams. The coal beds in this group are usually thin and are often interbedded with sandstones and shales.

2. The Middle Coal Group, which includes the beds of the Carboniferous Series, and is characterized by the presence of coal beds and the absence of coal seams. The coal beds in this group are usually thicker and are often interbedded with sandstones and shales.

3. The Upper Coal Group, which includes the beds of the Permian Series, and is characterized by the presence of coal beds and the absence of coal seams. The coal beds in this group are usually thick and are often interbedded with sandstones and shales.

The following brief outline of the stratigraphic succession of the strata of the coal fields of the United States is intended to give a general idea of the stratigraphic relations of the strata and to indicate the nature of the coal deposits.

The coal beds are divided into three groups:

1. The Lower Coal Group, which includes the beds of the Old Red Sandstone and the Lower Coal Measures, and is characterized by the presence of coal beds and the absence of coal seams. The coal beds in this group are usually thin and are often interbedded with sandstones and shales.

2. The Middle Coal Group, which includes the beds of the Carboniferous Series, and is characterized by the presence of coal beds and the absence of coal seams. The coal beds in this group are usually thicker and are often interbedded with sandstones and shales.

3. The Upper Coal Group, which includes the beds of the Permian Series, and is characterized by the presence of coal beds and the absence of coal seams. The coal beds in this group are usually thick and are often interbedded with sandstones and shales.

The following brief outline of the stratigraphic succession of the strata of the coal fields of the United States is intended to give a general idea of the stratigraphic relations of the strata and to indicate the nature of the coal deposits.

The coal beds are divided into three groups:

1. The Lower Coal Group, which includes the beds of the Old Red Sandstone and the Lower Coal Measures, and is characterized by the presence of coal beds and the absence of coal seams. The coal beds in this group are usually thin and are often interbedded with sandstones and shales.

2. The Middle Coal Group, which includes the beds of the Carboniferous Series, and is characterized by the presence of coal beds and the absence of coal seams. The coal beds in this group are usually thicker and are often interbedded with sandstones and shales.

3. The Upper Coal Group, which includes the beds of the Permian Series, and is characterized by the presence of coal beds and the absence of coal seams. The coal beds in this group are usually thick and are often interbedded with sandstones and shales.

The following brief outline of the stratigraphic succession of the strata of the coal fields of the United States is intended to give a general idea of the stratigraphic relations of the strata and to indicate the nature of the coal deposits.

The coal beds are divided into three groups:

1. The Lower Coal Group, which includes the beds of the Old Red Sandstone and the Lower Coal Measures, and is characterized by the presence of coal beds and the absence of coal seams. The coal beds in this group are usually thin and are often interbedded with sandstones and shales.

2. The Middle Coal Group, which includes the beds of the Carboniferous Series, and is characterized by the presence of coal beds and the absence of coal seams. The coal beds in this group are usually thicker and are often interbedded with sandstones and shales.

3. The Upper Coal Group, which includes the beds of the Permian Series, and is characterized by the presence of coal beds and the absence of coal seams. The coal beds in this group are usually thick and are often interbedded with sandstones and shales.

The following brief outline of the stratigraphic succession of the strata of the coal fields of the United States is intended to give a general idea of the stratigraphic relations of the strata and to indicate the nature of the coal deposits.

The coal beds are divided into three groups:

1. The Lower Coal Group, which includes the beds of the Old Red Sandstone and the Lower Coal Measures, and is characterized by the presence of coal beds and the absence of coal seams. The coal beds in this group are usually thin and are often interbedded with sandstones and shales.

2. The Middle Coal Group, which includes the beds of the Carboniferous Series, and is characterized by the presence of coal beds and the absence of coal seams. The coal beds in this group are usually thicker and are often interbedded with sandstones and shales.

3. The Upper Coal Group, which includes the beds of the Permian Series, and is characterized by the presence of coal beds and the absence of coal seams. The coal beds in this group are usually thick and are often interbedded with sandstones and shales.

The following brief outline of the stratigraphic succession of the strata of the coal fields of the United States is intended to give a general idea of the stratigraphic relations of the strata and to indicate the nature of the coal deposits.

The coal beds are divided into three groups:

1. The Lower Coal Group, which includes the beds of the Old Red Sandstone and the Lower Coal Measures, and is characterized by the presence of coal beds and the absence of coal seams. The coal beds in this group are usually thin and are often interbedded with sandstones and shales.

2. The Middle Coal Group, which includes the beds of the Carboniferous Series, and is characterized by the presence of coal beds and the absence of coal seams. The coal beds in this group are usually thicker and are often interbedded with sandstones and shales.

3. The Upper Coal Group, which includes the beds of the Permian Series, and is characterized by the presence of coal beds and the absence of coal seams. The coal beds in this group are usually thick and are often interbedded with sandstones and shales.
SAFETY THE FIRST CONSIDERATION.

Methods Employed by the H. C. Frick Coke Co. for the Prevention of Accidents to Employees.

By Stephen L. Goodale, 94*

Since about the latter part of January this year there has appeared on all underground, elevator, and chutes of the Frick Coke Co. a campaign for the prevention of accidents to employees. The campaign has been so successful that the number of accidents has been materially reduced, and the committee in charge of the work have been closely followed by the officers of the company, and the work has been carried on in such a manner as to make it a permanent feature in the company's operations.

The campaign was started with the aim of reducing the number of accidents, and the company has been able to accomplish this result by the efforts of the committee and the cooperation of the employees.

The committee has worked hard to see that the campaign is carried on in a thorough and systematic manner, and the employees have been closely watched in order to see that they are following the rules and regulations laid down by the committee.

The success of the campaign is due to the fact that the employees have been thoroughly convinced of the necessity of preventing accidents, and that they are willing to do their share in this work.

The campaign has been a great success, and the company is well satisfied with the results.

The campaign has been carried on in a systematic manner, and the committee has worked hard to see that the rules and regulations are complied with. The company is well satisfied with the results, and the campaign has been a great success.

The success of the campaign is due to the fact that the employees have been thoroughly convinced of the necessity of preventing accidents, and that they are willing to do their share in this work.

The campaign has been a great success, and the company is well satisfied with the results.

The campaign has been carried on in a systematic manner, and the committee has worked hard to see that the rules and regulations are complied with.

The company is well satisfied with the results, and the campaign has been a great success.
light must not be permitted in the same mine, even upon the same bed. In writing, of the materials or foremen, the superintendent is an order to any man, or on any part of the property, in such a manner as may be directed by the mine inspector. In all cases in which a mine inspector has exercised his discretion, the property may be occupied by the miners, or persons of any other class, for any purpose whatever, or for any purpose other than that for which it was intended. Any person occupying any part of the property, or any part of the materials, or the property of any person, for any purpose other than that for which it was intended, shall be liable to the penalties prescribed by law for violation of the mining laws; and any person who shall willfully cause any person to occupy any part of the property, or any part of the materials, or the property of any person, for any purpose other than that for which it was intended, shall be liable to a fine of one hundred dollars for each violation of the mining laws.

25. Any person who shall willfully obstruct the access of the mine inspector to any part of the property, or any part of the materials, or the property of any person, for any purpose other than that for which it was intended, shall be liable to a fine of one hundred dollars for each violation of the mining laws.

26. Any person who shall willfully obstruct the access of the mine inspector to any part of the property, or any part of the materials, or the property of any person, for any purpose other than that for which it was intended, shall be liable to a fine of one hundred dollars for each violation of the mining laws.

27. Any person who shall willfully obstruct the access of the mine inspector to any part of the property, or any part of the materials, or the property of any person, for any purpose other than that for which it was intended, shall be liable to a fine of one hundred dollars for each violation of the mining laws.

28. Any person who shall willfully obstruct the access of the mine inspector to any part of the property, or any part of the materials, or the property of any person, for any purpose other than that for which it was intended, shall be liable to a fine of one hundred dollars for each violation of the mining laws.

29. Any person who shall willfully obstruct the access of the mine inspector to any part of the property, or any part of the materials, or the property of any person, for any purpose other than that for which it was intended, shall be liable to a fine of one hundred dollars for each violation of the mining laws.

30. Any person who shall willfully obstruct the access of the mine inspector to any part of the property, or any part of the materials, or the property of any person, for any purpose other than that for which it was intended, shall be liable to a fine of one hundred dollars for each violation of the mining laws.

31. Any person who shall willfully obstruct the access of the mine inspector to any part of the property, or any part of the materials, or the property of any person, for any purpose other than that for which it was intended, shall be liable to a fine of one hundred dollars for each violation of the mining laws.

32. Any person who shall willfully obstruct the access of the mine inspector to any part of the property, or any part of the materials, or the property of any person, for any purpose other than that for which it was intended, shall be liable to a fine of one hundred dollars for each violation of the mining laws.

33. Any person who shall willfully obstruct the access of the mine inspector to any part of the property, or any part of the materials, or the property of any person, for any purpose other than that for which it was intended, shall be liable to a fine of one hundred dollars for each violation of the mining laws.

34. Any person who shall willfully obstruct the access of the mine inspector to any part of the property, or any part of the materials, or the property of any person, for any purpose other than that for which it was intended, shall be liable to a fine of one hundred dollars for each violation of the mining laws.

35. Any person who shall willfully obstruct the access of the mine inspector to any part of the property, or any part of the materials, or the property of any person, for any purpose other than that for which it was intended, shall be liable to a fine of one hundred dollars for each violation of the mining laws.
STOCHIOMETRY, and that he will give much
attention to the study of the equilibrium
of the system. The wide, practical experience
of Dr. Chauvenet is the selection of George
Stoichiometry, and that he will give much
attention to the study of the equilibrium
of the system. The wide, practical experience
of Dr. Chauvenet is the selection of George
winter. Professor Schneider's 17-year-old son will enter the School of Mines this fall.

Victor R. Keen has accepted a government position in the Philippines.

We made several mistakes in the name and address of Dr. C. O. McInnerney. Mrs. McInnerney's residence is 2309 S. Denver Avenue, August Magazine. She is laboratory assistant, National Bureau of Standards, Washington, D. C.

J. B. Neville, Jr., is located in Denver at 670 Ogden Street. E. B. Green is in the Pyramid Oil Company, Mariposa, California, P. O. Box 486.

Prof. Carl A. Allen will occupy the remaining position of J. L. Armstrong in Golden this winter. Prof. Armstrong will live in Denver. Edward H. Roll has returned to Denver after a six weeks' absence in the southwest.

Mr. Pfeiffer is visiting his brother in Golden.

Ray R. Hauser was in Golden with his brother, Dr. E. W. Hauser, who had been away for several weeks. They are now located at Bearcliff, New, near where Mr. Hauser is the mining and metallurgical engineer for the Walter M. Brown Mining Company. "Mining has done a good deal of good for my spirit," he writes from his vacation on the football field.

C. A. Pitman was in Golden for several days, doing some experiment work. He has left for Arizona. His brother, Dr. L. H. Pitman, is still superintendent for the Colorado Mining Company at Carthage, Arizona. He is doing some experiment work for the Bureau of Mines.

Dr. Victor C. Alderson and Capt. James T. Smith have made several trips of inspection to the different mining districts during the past two months. In the Idaho Springs district they visited the numerous mills now under construction, and made valuable suggestions concerning the engineering and operation of the different mining districts.

Robert Keeney, who was recently engaged in metallurgy at the School of Mines, has returned for his resignation. Mr. Keeney is to be a metallurgist for the British-V varsity Gold Mining Company at Baguio, Luzon, Philippines. He will work for the mine property and bring over to this country to be tested. He will then design the project and operate these mills. He will have an article in the Magazine in the near future. Dr. Keeney was one of the mining laboratory instructors at the School and he left to take a position at the request of the Trustees.

The engagement of Edward J. Dittus and Miss Carolyn Wolfe, of Denver, will be announced at the next meeting of the Board of Trustees. The wedding will take place in August, to be followed by a trip to Europe and the United States.

The young couple expect to occupy rooms with Dr. Garvin in Golden.

CHAUVENET TO BE SPECIAL LECTURER.

After a great deal of urging from the Board of Trustees, especially from our Alumni, Professor Patton, and Professor Butler, Dr. Chauvenet has consented to give one lecture a week at the School of Mines, beginning the fall term.

C. L. Brown and J. H. Bradford, '30, were hearing and operating the big Wool Mountain mill, which was destroyed by fire the following week at Westcliffe, Col., and Mr. Bradford promised that everything was ready to begin work at the School of Mines, though the fire caused a short delay.

About midnight a terrific explosion occurred at the Warden mine near Anaconda, Montana. The explosion was in a part of the mine where the copper ore was last worked. The explosion occurred at the mine of the same name, near Anaconda, Montana, and caused a great deal of damage. Several persons were injured by the blast, and the mine was temporarily closed.

Mr. R. H. Taylor has been busy at his profession practical mining engineering.

With the closing of the school recently, accompanied by his brother, Mr. J. H. Taylor, of Trinidad, Colorado.

Mr. R. H. Taylor has been busy at his profession practical mining engineering.

With the closing of the school recently, accompanied by his brother, Mr. J. H. Taylor, of Trinidad, Colorado.

Miss Mabel Blumen has been busy at her profession practical mining engineering.

With the closing of the school recently, accompanied by his brother, Mr. J. H. Taylor, of Trinidad, Colorado.

Dr. Victor C. Alderson and Capt. James T. Smith have made several trips of inspection to the different mining districts during the past two months. In the Idaho Springs district they visited the numerous mills now under construction, and made valuable suggestions concerning the engineering and operation of the different mining districts.

Robert Keeney, who was recently engaged in metallurgy at the School of Mines, has returned for his resignation. Mr. Keeney is to be a metallurgist for the British-Varsitv Gold Mining Company at Baguio, Luzon, Philippines. He will work for the mine property and bring over to this country to be tested. He will then design the project and operate these mills. He will have an article in the Magazine in the near future. Dr. Keeney was one of the mining laboratory instructors at the School and he left to take a position at the request of the Trustees.

The engagement of Edward J. Dittus and Miss Carolyn Wolfe, of Denver, will be announced at the next meeting of the Board of Trustees. The wedding will take place in August, to be followed by a trip to Europe and the United States.

The young couple expect to occupy rooms with Dr. Garvin in Golden.

CHAUVENET TO BE SPECIAL LECTURER.

After a great deal of urging from the Board of Trustees, especially from our Alumni, Professor Patton, and Professor Butler, Dr. Chauvenet has consented to give one lecture a week at the School of Mines, beginning the fall term.

C. L. Brown and J. H. Bradford, '30, were hearing and operating the big Wool Mountain mill, which was destroyed by fire the following week at Westcliffe, Col., and Mr. Bradford promised that everything was ready to begin work at the School of Mines, though the fire caused a short delay.

About midnight a terrific explosion occurred at the Warden mine near Anaconda, Montana. The explosion was in a part of the mine where the copper ore was last worked. The explosion occurred at the mine of the same name, near Anaconda, Montana, and caused a great deal of damage. Several persons were injured by the blast, and the mine was temporarily closed.

Mr. R. H. Taylor has been busy at his profession practical mining engineering.

With the closing of the school recently, accompanied by his brother, Mr. J. H. Taylor, of Trinidad, Colorado.

Miss Mabel Blumen has been busy at her profession practical mining engineering.

With the closing of the school recently, accompanied by his brother, Mr. J. H. Taylor, of Trinidad, Colorado.

Dr. Victor C. Alderson and Capt. James T. Smith have made several trips of inspection to the different mining districts during the past two months. In the Idaho Springs district they visited the numerous mills now under construction, and made valuable suggestions concerning the engineering and operation of the different mining districts.

Robert Keeney, who was recently engaged in metallurgy at the School of Mines, has returned for his resignation. Mr. Keeney is to be a metallurgist for the British-Varsitv Gold Mining Company at Baguio, Luzon, Philippines. He will work for the mine property and bring over to this country to be tested. He will then design the project and operate these mills. He will have an article in the Magazine in the near future. Dr. Keeney was one of the mining laboratory instructors at the School and he left to take a position at the request of the Trustees.

The engagement of Edward J. Dittus and Miss Carolyn Wolfe, of Denver, will be announced at the next meeting of the Board of Trustees. The wedding will take place in August, to be followed by a trip to Europe and the United States.

The young couple expect to occupy rooms with Dr. Garvin in Golden.

CHAUVENET TO BE SPECIAL LECTURER.

After a great deal of urging from the Board of Trustees, especially from our Alumni, Professor Patton, and Professor Butler, Dr. Chauvenet has consented to give one lecture a week at the School of Mines, beginning the fall term.

C. L. Brown and J. H. Bradford, '30, were hearing and operating the big Wool Mountain mill, which was destroyed by fire the following week at Westcliffe, Col., and Mr. Bradford promised that everything was ready to begin work at the School of Mines, though the fire caused a short delay.

About midnight a terrific explosion occurred at the Warden mine near Anaconda, Montana. The explosion was in a part of the mine where the copper ore was last worked. The explosion occurred at the mine of the same name, near Anaconda, Montana, and caused a great deal of damage. Several persons were injured by the blast, and the mine was temporarily closed.

Mr. R. H. Taylor has been busy at his profession practical mining engineering.

With the closing of the school recently, accompanied by his brother, Mr. J. H. Taylor, of Trinidad, Colorado.

Miss Mabel Blumen has been busy at her profession practical mining engineering.

With the closing of the school recently, accompanied by his brother, Mr. J. H. Taylor, of Trinidad, Colorado.

Dr. Victor C. Alderson and Capt. James T. Smith have made several trips of inspection to the different mining districts during the past two months. In the Idaho Springs district they visited the numerous mills now under construction, and made valuable suggestions concerning the engineering and operation of the different mining districts.

Robert Keeney, who was recently engaged in metallurgy at the School of Mines, has returned for his resignation. Mr. Keeney is to be a metallurgist for the British-Varsitv Gold Mining Company at Baguio, Luzon, Philippines. He will work for the mine property and bring over to this country to be tested. He will then design the project and operate these mills. He will have an article in the Magazine in the near future. Dr. Keeney was one of the mining laboratory instructors at the School and he left to take a position at the request of the Trustees.

The engagement of Edward J. Dittus and Miss Carolyn Wolfe, of Denver, will be announced at the next meeting of the Board of Trustees. The wedding will take place in August, to be followed by a trip to Europe and the United States.

The young couple expect to occupy rooms with Dr. Garvin in Golden.

CHAUVENET TO BE SPECIAL LECTURER.
Miss Ruth Grant and Thomas Skinner were united. The groom was a student of the School of Mines recently of the chemical instructor parsonage. Many friends after September 15th. They have leased the lower floor of the new Baptist church, which is going to ask the Federal government to answer the problems selected for the solutions and answers. Prof. Arthur J. Holmes has opened an office to do mining problems for us the problems that are too large for the Colorado School of Mines. They aim to cover the whole range of elementary mathematics through the calculus.

"Many of the problems were suggested by various departments of the School, and many are taken bodily from tests in elementary mathematics. No credit is claimed for originality. The main purpose is to revise in a practical way the mathematics which the student has had and briefly encourage him to look upon it as an instrument of power and usefulness, rather than one of mental development and culture."

We quote a few of the easiest problems taken at random to show the scope: 1. The parcels-post regulations give the maximum measurements of a parcel as being 105. A "wrought iron plate 1-inch thick, one foot square that cars leave Denver on the even hour and there is no doubt but that the metal mining engineer, and others.

Ouray, William Peregrine, a junior at the School of Mines recently of the chemical instructor parsonage. Many friends after September 15th. They have leased the lower floor of the new Baptist church, which is going to ask the Federal government to answer the problems selected for the solutions and answers. Prof. Arthur J. Holmes has opened an office to do mining problems for us the problems that are too large for the Colorado School of Mines. They aim to cover the whole range of elementary mathematics through the calculus.

"Many of the problems were suggested by various departments of the School, and many are taken bodily from tests in elementary mathematics. No credit is claimed for originality. The main purpose is to revise in a practical way the mathematics which the student has had and briefly encourage him to look upon it as an instrument of power and usefulness, rather than one of mental development and culture."

We quote a few of the easiest problems taken at random to show the scope: 1. The parcels-post regulations give the maximum measurements of a parcel as being 105. A "wrought iron plate 1-inch thick, one foot square that cars leave Denver on the even hour and there is no doubt but that the metal mining engineer, and others.

Ouray, William Peregrine, a junior at the School of Mines recently of the chemical instructor parsonage. Many friends after September 15th. They have leased the lower floor of the new Baptist church, which is going to ask the Federal government to answer the problems selected for the solutions and answers. Prof. Arthur J. Holmes has opened an office to do mining problems for us the problems that are too large for the Colorado School of Mines. They aim to cover the whole range of elementary mathematics through the calculus.

"Many of the problems were suggested by various departments of the School, and many are taken bodily from tests in elementary mathematics. No credit is claimed for originality. The main purpose is to revise in a practical way the mathematics which the student has had and briefly encourage him to look upon it as an instrument of power and usefulness, rather than one of mental development and culture."

We quote a few of the easiest problems taken at random to show the scope: 1. The parcels-post regulations give the maximum measurements of a parcel as being 105. A "wrought iron plate 1-inch thick, one foot square that cars leave Denver on the even hour and there is no doubt but that the metal mining engineer, and others.

Ouray, William Peregrine, a junior at the School of Mines recently of the chemical instructor parsonage. Many friends after September 15th. They have leased the lower floor of the new Baptist church, which is going to ask the Federal government to answer the problems selected for the solutions and answers. Prof. Arthur J. Holmes has opened an office to do mining problems for us the problems that are too large for the Colorado School of Mines. They aim to cover the whole range of elementary mathematics through the calculus.

"Many of the problems were suggested by various departments of the School, and many are taken bodily from tests in elementary mathematics. No credit is claimed for originality. The main purpose is to revise in a practical way the mathematics which the student has had and briefly encourage him to look upon it as an instrument of power and usefulness, rather than one of mental development and culture."

We quote a few of the easiest problems taken at random to show the scope: 1. The parcels-post regulations give the maximum measurements of a parcel as being 105. A "wrought iron plate 1-inch thick, one foot square that cars leave Denver on the even hour and there is no doubt but that the metal mining engineer, and others.

Ouray, William Peregrine, a junior at the School of Mines recently of the chemical instructor parsonage. Many friends after September 15th. They have leased the lower floor of the new Baptist church, which is going to ask the Federal government to answer the problems selected for the solutions and answers. Prof. Arthur J. Holmes has opened an office to do mining problems for us the problems that are too large for the Colorado School of Mines. They aim to cover the whole range of elementary mathematics through the calculus.

"Many of the problems were suggested by various departments of the School, and many are taken bodily from tests in elementary mathematics. No credit is claimed for originality. The main purpose is to revise in a practical way the mathematics which the student has had and briefly encourage him to look upon it as an instrument of power and usefulness, rather than one of mental development and culture."

We quote a few of the easiest problems taken at random to show the scope: 1. The parcels-post regulations give the maximum measurements of a parcel as being 105. A "wrought iron plate 1-inch thick, one foot square that cars leave Denver on the even hour and there is no doubt but that the metal mining engineer, and others.

Ouray, William Peregrine, a junior at the School of Mines recently of the chemical instructor parsonage. Many friends after September 15th. They have leased the lower floor of the new Baptist church, which is going to ask the Federal government to answer the problems selected for the solutions and answers. Prof. Arthur J. Holmes has opened an office to do mining problems for us the problems that are too large for the Colorado School of Mines. They aim to cover the whole range of elementary mathematics through the calculus.

"Many of the problems were suggested by various departments of the School, and many are taken bodily from tests in elementary mathematics. No credit is claimed for originality. The main purpose is to revise in a practical way the mathematics which the student has had and briefly encourage him to look upon it as an instrument of power and usefulness, rather than one of mental development and culture."

We quote a few of the easiest problems taken at random to show the scope: 1. The parcels-post regulations give the maximum measurements of a parcel as being 105. A "wrought iron plate 1-inch thick, one foot square that cars leave Denver on the even hour and there is no doubt but that the metal mining engineer, and others.

Ouray, William Peregrine, a junior at the School of Mines recently of the chemical instructor parsonage. Many friends after September 15th. They have leased the lower floor of the new Baptist church, which is going to ask the Federal government to answer the problems selected for the solutions and answers. Prof. Arthur J. Holmes has opened an office to do mining problems for us the problems that are too large for the Colorado School of Mines. They aim to cover the whole range of elementary mathematics through the calculus.

"Many of the problems were suggested by various departments of the School, and many are taken bodily from tests in elementary mathematics. No credit is claimed for originality. The main purpose is to revise in a practical way the mathematics which the student has had and briefly encourage him to look upon it as an instrument of power and usefulness, rather than one of mental development and culture."

We quote a few of the easiest problems taken at random to show the scope: 1. The parcels-post regulations give the maximum measurements of a parcel as being 105. A "wrought iron plate 1-inch thick, one foot square that cars leave Denver on the even hour and there is no doubt but that the metal mining engineer, and others.
Chapar to Prevent Malaria Than to Have It.

An American company, operating in the "hot country" in Mexico, has great difficulty in keeping men, good or bad, on account of the discomforts of living, the lack of reasonable comforts and the vagaries of malaria. The company is making money. It has cheap native labor, and the doctor is positive that he could reduce the fever cases 90 per cent, if given enough labor to clear the drainage immediately around the camp. The marvellous record made on the coast may justify his statement. Many Mexican mines are cursed with fever, and the managers of these, as well as of other tropical countries, owe it to their companies, as well as to their own moral character, to know and to do the necessary work for preventing those among their people which cannot be done away with.

When a mines manager must resort to having two men for each responsible position, must have a constant stream of contract labor on the road and in himself in part of the time drinking quinine solution, would it not be profitable to give the men a decent hotel? It would be an excellent way to show an appreciation of the value of these men's services. They are not, even of his own family. Almost every man is the way he can to get rid of the responsibility of living is possible in the ordinary camp, as the mines company usually owns the land and most of the houses.

Ice Plants Should Be More Common.

The matter of ice, particularly in hot or extremely hot parts of the world, is one that cannot be overlooked. The amount of ice consumed by the operation and power costs in the mining camps is small. It is a condition that must be improved. A few years ago, an engineer at the very bottom of the mine, where the temperature is about 100 degrees F., installed an ice room, thus reducing the difficulty of keeping employees satisfied with the amount of power required to be insignificant.

Company Store Often a Company Steal.

The company store in many cases is a great i

The Superficial Appearance and Alteration of ore Deposits.

(Continued From Page 5.)

A school for natives, or, in the case of Americans, the conditions under which the mining company is for the position if he could be found. Instead of making frequent changes, the average life of a mining position is about a year. If one may judge by the changes in the mining camp for the past ten years, there is little better to send department men to use other native labor. They are the most efficient of all the owners of which mines are cursed with fever.

The company store is by some companies as in the manufacture of steel or in building a bridge. A man that he must prevent any shipment of goods until employees have an ambition—admit that this is foolish—to isolate their children, and even if he does the children are no good, a school satisfies the parents and is to that extent a good investment for the company. The laborer gets the impression that his efforts and considerations are required and appreciated in his company and endeavors to give the best service to his company and the company he works for.

Cheap Doctors the Companies' Desiderata.

Many companies provide a doctor gratuitously, usually a recently graduated student, who will work for a small salary and experience, and who, being also a law student, will have all the necessary apparatus and facilities on account of his being willing to work for low pay. A competent, normal physician is a most valuable asset to a company—and who will keep the books and look after the store? A good surgeon, a trained medicine man, or a trained chemist, will be an asset to the company. A married man may stay for a time at a camp not so provided, but only to the mining company and endeavors to give the best service to his company and the company he works for.

Cheap doctors are the companies' desiderata.

Many companies provide a doctor gratuitously, usually a recently graduated student, who will work for a small salary and experience, and who, being also a law student, will have all the necessary apparatus and facilities on account of his being willing to work for low pay. A competent, normal physician is a most valuable asset to a company—and who will keep the books and look after the store? A good surgeon, a trained medicine man, or a trained chemist, will be an asset to the company.
Eighth—Beaupre—This class is easily recognized because the ore is a very evidently river gravel which has been enriched by explosive. Once the trend of the old river channel is determined they are readily found. California and British Columbia.

Ninth—Stock-Works—Stocks consist of a multitude of little veins extending laterally in all directions. There are usually barren. In as much as the veins are generally too small to work, a stock-works deposit is recognized by a very evident stock zone in the country rock, which contains the mineralized dike and so trace out generally find some distinguishing feature in the country. Occasionally, however, one may recognize this class because the ore is very evidently cement.

Eruptive Rock—It is not, as a rule, difficult to recognize this class because the cement deposits are often calcareous, and when such is the case the quartz veins are often calcareous, and when such is the case they are often cemented together with quartz and calcite. Such deposits are very continuous and often form a thick and continuous body. The cement deposits of Western desert regions the underlying gravels are cemented with the cement forming a thick and continuous body.

Twelfth—Veins in Bedded Formation—This is a term given to veins which are confined to the beds. The veins do not penetrate any other beds but are confined to the beds in which they occur. Such areas may not be recognized as such until the veins have been entirely replaced with gold. When this is the case, the veins are easily found by following the veins in a gradual north or south direction. Such areas are usually too small to work except as a cement deposit.

Thirteenth—Cave Deposits in Quartzite or Limestone—Cave deposits are generally in the form of large bodies of low grade ore. Cave deposits are frequently found in the form of large bodies of low grade ore.

Fourteenth—Fractured Strata Such as Lenses in Schist and Slate—In this class the ore is confined to the lenses of the schist and slate. The lenses are usually very thin and often form a very thick and continuous body. Such deposits are very continuous and often form a thick and continuous body.

Fifteenth—Cement Deposits—This class is a cement deposit. It is not, as a rule, difficult to recognize this class because the ore is very evidently cement. It is not, as a rule, difficult to recognize this class because the cement deposits are usually too small to work, a cement deposit is recognized by the cement forming a thick and continuous body.

Sixteenth—Lenses in Schist and Slate—In this class the ore is confined to the lenses of the schist and slate. The lenses are usually very thin and often form a very thick and continuous body. Such deposits are very continuous and often form a thick and continuous body.

Seventeenth—Cement Deposits on the Surface—Cement deposits on the surface are generally in the form of large bodies of low grade ore. Cement deposits on the surface are frequently found in the form of large bodies of low grade ore.

Anticlinal and Synclinal Folds—This class includes all deposits which are confined to the folds of the earth. The folds are generally of two types, the anticlinal and synclinal folds. The anticlinal folds are generally in the form of large bodies of low grade ore. The synclinal folds are generally in the form of large bodies of low grade ore.

Inclined and Synclinal Folds—This class includes all deposits which are confined to the folds of the earth. The folds are generally of two types, the inclined and synclinal folds. The inclined folds are generally in the form of large bodies of low grade ore. The synclinal folds are generally in the form of large bodies of low grade ore.
dry enrichment is almost wholly lacking
and oxidation rarely extends more than
10 feet deep. The age of deposits is another
disturbing feature. There is evidence in
some deposits that alterations took place
under conditions totally different from those
existing today. Thus the copper outcrops
on the lower Bill Williams Fork in Arizona
look very different from similar outcrops in
similar formations, but at a higher altitude.
There are a few remnants of recent beach
cover in the lower country, and I think the
inference is justified that the leaching of
the lower outcrops was assisted by the ac­
tion of tide waters. The lower outcrops are
more honey combed and show less carbon­
ate of copper than those above the beach­
graves.

In the above discussion I have omitted
all mention of faults and foldings which may
occur after the ore body's formation and
so distort the same. This is a subject in it­
self, and may well form the subject of a
separate paper.

PROFESSIONAL CARDS

BREWER, HENRY C.
Mining Engineer
Practice limited to personal interests
and Wyoming mineral matters
P.O. Box National Bank Building Denver, Colo.

DR. JOHN P. KELLY
Office at Drug Store
Washington Avenue, Golden, Colo.
Phone at Residence, Golden 741.
Phone at Office, Golden 671.

CRESTED BUTTE COAL CO.
BALDWIN FUEL CO.
WALSENBURG FUEL CO.
FRANK BULKLEY, President
800 First National Bank Building, Denver, Colo.

J. LOFTON DAVIDSON
"The Fire Insurance Man"
130 Washington Ave., Golden, Colo.

THE J. J. BROWN INVESTMENT CO.
Estates, Loans and Securities
202 Boston Building, Denver, Colorado.

General Electric Company
Electric Mining Machinery

- LIGHTING, RAILWAY AND POWER APPARATUS
- Large Denver Stock of Motors and Supplies

MOTOR-DRIVEN PUMP
Denver Office, First National Bank Building
Salt Lake Office, Newhouse Building General Office, Schenectady, N. Y.