AMERICA REENERGIZED
Mines and the turnaround in oil and gas
Not Just Software . . . RockWare.
For Over 29 Years.

RockWorks®
Downhole Data Management, Analysis and Visualization
- Streamlined drillhole manager includes:
 - Deviated Survey Data
 - Lithology
 - Stratigraphy
 - Assay data
 - Downhole Geophysics
 - Oriented Fractures
- Create base, contour, geology maps
- Generate drillhole logs and cross-sections
- Create 3D assay/lithology/stratigraphy models
- Compute volumes and statistics
- Export to GIS, CAD and more

$3,000

RockWorks Utilities™
An Indispensable Collection of Modeling, Analysis, and Display Tools
- Point and multivariate mapping tools
- Contour maps and three dimensional surfaces
- Section and Lease maps (land grid data included)
- Google Earth™ exports
- Gridding and block modeling tools
- Volumetrics
- Pit optimization
- Piper and Stiff diagrams
- Rose & Stereonet diagrams
- Statistical tools

$599

LogPlot®
Powerful, Flexible, Easy-to-Use Borehole Well Log Software
- Dozens of templates available or design your own in the drawing-style log designer window
- Tabbed data sheets
- Import/Export data from LAS, Excel, RockWorks
- Paginated and continuous logs at any vertical scale
- Export to a variety of formats
- Free viewer can be distributed to clients

$699

PetraSim™
A Preprocessor and Postprocessor for TOUGH2, T2VOC, TMVOC, TOUGHREACT and TOUGH-FX/HYDRATE
- Model multi-component fluid flow, heat transfer and reactive transport processes
- Saturated and unsaturated conditions
- Fractured and porous media
- Mesh generation, parameter definition and display of results
- Now supports TOUGH2-MP (parallel version of the TOUGH2 simulator)
- Applications include geothermal studies, carbon sequestration, contaminant transport modeling, vadose zone hydrology

Call for pricing

Free trials for most of our products available at www.rockware.com

Follow us on:

303.278.3534 • 800.775.6745
RockWare.com
FEATURES

18 The Best Gigs on Campus
Working your way through college doesn’t have to be a grind. Our informal survey of the best jobs on campus turned up quite a few students who love their work.

22 Earning Energy Independence
By the end of the decade, the United States could become the world’s largest oil producer and by 2035, a net energy exporter. How has Mines contributed to this surprising turnaround?

26 Braking I-70’s Slow Slide
Inch by inch, a stretch of highway near the Eisenhower Tunnel is sliding downhill. In search of a viable solution, CDOT turned to one of the world’s top slope-stability experts, Mines Professor Ning Lu.

DEPARTMENTS

4 Inbox
6 Editor’s Take
8 Inside Mines
Bold Advice for Graduates | Performing at the Vatican | $5 Million for Tunneling Program | Unconventional Teaching | Just Published | Spotlight on Tom Davis | Sports: #1 in Learfield | Female Motorsports Champ

30 Alumni Network
Continuing a Legacy | Securing Your Next Move | Meet the Board

32 Class Notes
Alumni Photos & Updates | Profiles: Keith Staley ’35 | Amy Clarke PhD ’06 | Shane Carwin ’04

44 In Memoriam

48 At Your Service

50 Miner’s Pic

WEB EXTRAS | MULTIMEDIA
minesmagazine.com

16 Tough Talk “Conflict or Opportunity: Exploring the Art of Difficult Conversations,” President’s Diversity Breakfast

39 World War II Remembrances By Bronze Star Medal recipient and long-time miner John Sullivan ’38

40 Lunar Landscape Gravitational map of moon reveals its violent past

Icons indicate additional online content Video Photos Text Audio
QUANTUM DOTS

I really enjoyed the cover story on quantum dots as they relate to breakthroughs in solar panels. It’s like getting an issue of Scientific American that relates to research being done at my old school. My only comment is, more articles like this, please! I’m sure Mines has enough going on to fill a much larger magazine. The level of detail—given your audience—could be increased, though leaving it as-is makes this easy reading for a plane ride.

Steve Schow ’07

Enjoyed the article on quantum dots. Very promising bench results. Also liked the news of new departments reflecting the diverse areas of research at Mines.

Jay Gallagher MS ’79

Nice work on this edition, especially the article on Mark Lusk’s solar research. You made a highly technical topic much more accessible.

Jon A. Leydens, associate professor
Division of Liberal Arts and International Studies
Colorado School of Mines

UNFORTunate OMISSION

I enjoyed “Exploring Human Landscapes” [fall 2012], but in the photo on p. 25 you show and mention Bill Clinton and Saunders. You fail to mention the great Nelson Mandela. I worked on the extremely deep gold mines of South Africa from 1983 until 1995, and saw Mandela released from prison and eventually democratically elected as South Africa’s president. He surely deserves to be recognized in this photo!

John D. Applegate (Dan) ’83

Ed.: He certainly does, and we deeply regret that we failed to include his name. We thought he was so recognizable that we didn’t need to name him, but of course we should have. Thanks for pointing out this oversight and sharing your own experience.

PRIDE AND REMONSTRATION

After reading the story about the bell [fall 2012 issue] and seeing my uncle in Editor’s Take, we found a couple more photos from the past. My dad and his two brothers were involved in the bell heist and engraving. We were told the story and passed it on to our kids when they visited the CU museum with their elementary school. When the school tour came to the bell, my wife would pull the child aside and tell their grandfather’s story of how the M was carved into the CU bell—the smile of pride they had for their grandfather that day!

We also told them that times have changed and today they would be arrested (if caught). With a son now at Mines, we will see if the message stuck.

Name withheld

Ed.: Turn to Miner’s Pic, p. 50, for photos of the CU bell being engraved the night it was returned to campus.

SKIER SAFETY ENGINEERS

In the obituary for Donald Larson in the fall 2012 edition, it was such a pleasure to see that he had won the Robert Lesage award from the Rocky Mountain Lift Association in 2008. I know a little bit about Robert Lesage because he was my father, and also a Mines graduate with an EM degree in 1948.

As was learned in 1976 with the Vail Gondola accident, safety can never be assumed and is never an accident. The ski industry is a critical economic engine for Colorado. The RMLA is a critical and unsung hero that ensures the skiers’ safety on their way up the mountain. Engineers from Mines, let alone any other engineering college, do not typically find their way into the ski lift industry and ski lift engineering. These two truly were engineers of a thousand years.

William Lesage ’79

Ed.: After reading William Lesage’s email, we were curious to learn a little more about his father. Read what we found at minesmagazine.com/lesage.

REACHING OUT

I loved [the fall 2012 issue]. Great magazine. I always give them to kids in the neighborhood who have an interest in going to Mines.

Douglas Carlson ’84

You are doing a great job with Mines magazine. Keep up the good work! I guess that I am old-fashioned, but the electronic copy is not the same as holding the paper copy, regardless of how often I try. Maybe some day I will get an iPad and that will work. In the meantime, please keep the paper copy coming.

Jim Holley ’64

Ed.: Almost everything we print in the magazine is available at minesmagazine.com; however, so long as we have the demand and revenue for the print edition, we’ll continue producing it. (Yup, that was an oblique reminder of the importance of CSMAA membership. Thanks for keeping the presses rolling!)

As usual, the issue is outstanding—just amazing how you top yourself each quarter. Keep it up … for all of us.

Harry J. Briscoe ’71, MS ’72

Really enjoyed your article on the theft of the bell from CU.

Fred Fraikor

Not only did I read the magazine, I thoroughly enjoyed ALL of it. Thank you for your hard work.

Jim Larsen ’65
Pulling together, moving as one – this is the strength of a team. Each member, focused on their specific tasks, working in concert with the rest to propel the team to victory. At SandRidge, we realize it takes diverse backgrounds, skills and experiences to move the organization forward. It takes the whole team. It takes the power of us.
I had a very different Editor’s Take in mind until the day before we went to press. That was when my boss and friend, Anita Pariseau, came into my office at the end of the day to say she’d taken a position at Colorado College and would be leaving in a few weeks.

I’m happy for her: After nine years at Mines, she’s excited about the new challenge, and the position sounds like an ideal fit for her skills and experience. However, saying goodbye to a colleague is never easy, and she will be sincerely missed.

Anita is the best kind of leader. In six years, I can’t recall a single time she’s told me what to do, yet I can’t count the number of times I’ve gone to her to discuss a knotty problem or issue, and left with a solution.

My colleagues report much the same. By giving us all the latitude to create and innovate, she’s encouraged us to take ownership in our work, nurturing our development as professionals and growing CSMAA at the same time.

A strong alumni association is a powerful partner to any university, and her legacy will be felt for years. Today, CSMAA is at once warm and service-oriented, yet administratively lean and efficient. Alumni have more opportunities than ever to engage with the school, and network in person and online with each other; staff provide a steady stream of news and information to the community; CSMAA offers a wide range of programs and services to alumni and campus; and Mines magazine is more widely read and appreciated than ever.

Anita also leaves CSMAA well situated for the transition. Serena Bruzgo, who will serve as interim executive director during the search, has worked for CSMAA for seven years, the last two as deputy director. She’s extremely competent, knows the organization intimately, and has earned the trust of the staff and board of directors.

It was Anita who brought us the tagline displayed on our website: “Stay connected. Keep in touch. Get involved. Give back.” After giving so much of her time and energy for the last nine years, I, for one, won’t be asking her to remain involved and give back. However, those of us who have been privileged to work alongside her will make sure she stays connected and keeps in touch.

Thank you, Anita, for your leadership, your counsel, and your friendship.

Nick Sutcliffe
Editor and Director of Communications
Colorado School of Mines Alumni Association

P.S. Once you’ve read the issue, check out the Web Extras at minesmagazine.com. After publishing the profile of George Saunders ’81 in our last issue, he’s experienced a media blitz. Our doing? Well… the effusive New York Times Magazine article, “George Saunders Has Written the Best Book You’ll Read This Year,” might have made the bigger splash.
STRENGTH IN STEEL
STRENGTH IN PEOPLE

We are looking for top performing engineering graduates for challenging assignments at our facility in Pueblo, Colorado. EVRAZ is one of the largest vertically integrated steel and mining businesses in the world. We’re the largest producer of rail in North America and the largest recycler in Colorado. All while manufacturing excellence and building careers. If we sound like your kind of company, we’d like to hear from you.

EVRAZ Pueblo - Human Resources Department
719-561-6274 or bob.schwetje@evrazna.com

www.evrazna.com
Almost 45 years after graduating with a professional degree in physics from Mines, Joe Gray ’68 returned to campus on December 14, 2012, as guest speaker for Midyear Degree Convocation in Lockridge Arena. A world-renowned leader in cancer research who currently holds an endowed chair at Oregon Health and Science University, Gray began by saying that if his experience at Mines was any guide, then the assembled graduates had accomplished something remarkable.

His predictions for their careers in the decades ahead included reference to the past: His own graduation, he said, came a year before the United States put a man on the moon, at a time when a 4-kilobyte core processor was a technological marvel. We’ve seen astronomical growth in raw computational capacity since then, Gray pointed out, but great changes lie ahead. “Capabilities in information management and processing are fundamentally changing the fabric of society.” Speaking of issues like disease management, climate change and energy supply, he said, “You are going to be able to approach the engineering challenges of your generation at scales and at levels of detail not previously imaginable.”

Achieving this will involve harnessing the intellectual power of colleagues worldwide, he said. “So long as free worldwide information exchange can be maintained, you’ll just need to figure out how to sift through the enormous worldwide noise to find the useful signals to guide your work.”

He concluded with three recommendations: “Embrace intellectual diversity. Using knowledge in one domain to solve problems in another is something that has served me well,” said Gray, whose accomplishments in cancer research came with no formal education in the biosciences.

Secondly, “Expose your own ignorance to people who possess the knowledge you need ... It is difficult to learn if you don’t let your potential teachers know what you don’t know.”

And lastly, “Have the courage to attempt things that others think impossible ... Big things come from bold approaches.”

—Nick Sutcliffe

For more on Joe Gray’s research, read the spring 2010 article, “Cracking Cancer’s Code,” at minesmagazine.com. There, under Web Extras, you can also find an update on his move to Oregon State University and the role Nike founder Phil Knight played in getting him there.
A 1976 alumnus has contributed $5 million anonymously to Colorado School of Mines to support the university’s Underground Construction and Tunneling Program and to provide scholarships for undergraduate students. A total of $3.5 million will go to faculty support, $1 million will be used for startup, and $500,000 for undergraduate scholarships.

In 2011, the university established the Center for Underground Construction and Tunneling as an interdisciplinary program, principally between the departments of mining engineering, geology and geological engineering, and civil and environmental engineering. Academic programs and research within the center provide student training and education related to site characterization; design and construction of underground infrastructures, including water, highway or subway tunnels; and subsurface facilities beneath major metropolitan cities. “The underground construction and tunneling industry relies on a highly skilled engineering workforce and technical innovation that is only possible through interdisciplinary research and education,” says Mike Mooney, professor in the Department of Civil and Environmental Engineering and acting director of the center, explaining that the challenges of underground construction are getting increasingly complex.

The gift will enable the center to diversify its educational opportunities, which currently include industry-driven research, field trips, technical conferences and internships with industry professionals. Along with the undergraduate minor and “area of specialization” offered at the moment, a graduate degree program is now under development.

—Anna Gerber
UNCONVENTIONAL TEACHING

Renewable Energy Lessons from the Real World

If the real world can be the best classroom, then it’s probably a good idea to get away from school every now and then.

That’s precisely the idea behind an assignment in Chuck Stone’s course, Renewable Energy, in which students design their own field trips to companies or organizations involved in renewable energy or sustainability and outline their experience in a report.

“It was wide open,” said Stone, a teaching professor in the Physics Department, surrounded by students showing off their posters and reports during the “Forum on Renewable Energy” at Mines on December 6, 2012. “If I had told them what to do, we wouldn’t have this depth and breadth of projects here. I was incredibly impressed with the variety and creativity.”

The field trips took students from solar companies to training stations and even elementary schools.

Senior Katherine Bony contacted engineers at Wheat Ridge-based Major Geothermal to discover how engineers at the company access heat energy from below the earth's surface.

“I learned all about the different types of geothermal [systems]. I originally thought there was only vertical, but there’s horizontal, too. It all depends on the thermal conductivity of the ground,” says Bony. Her experience also led to an internship opportunity with the company.

Senior Kristen Heiden reported on her experience with civil engineers working on LEED certification for the Union Station redevelopment project in Denver. “Union Station has a big waste management system,” says Heiden, explaining that in addition to recycling, they look for ways to use waste material for construction.

Heiden also learned how lighting, ventilation systems and gardens can be incorporated to use less energy and enhance public space. “It’s a glimpse at what we can look forward to as engineers when we’re actually designing things,” she says.

Stone’s Renewable Energy class is part of the energy minor at Mines.

—David Tauchen

BOOKS

Just Published

The Simple Truth: BP’s Macondo Blowout
John Turley ’65, petroleum engineering graduate, offshore-drilling expert, and ocean engineer, describes his book as a “facts-based nonfiction novel.” The 350-page book takes readers aboard Transocean's Deepwater Horizon drilling rig, dramatizing the drilling of the 3.5-mile-deep exploration well, and documenting the operating and engineering decisions that led up to the catastrophe. (The Brier Patch, LLC, 2012)

A Patriot's History of the Modern World: From America's Exceptional Ascent to the Atomic Bomb: 1898–1945
Dave Dougherty ’61 co-wrote this historical work with author Larry Schweikart, presenting a conservative perspective on America's rise to undisputed dominance over the nearly 50-year span from the Spanish-American war to the end of World War II. They argue that the United States drove improved living standards, accelerated innovation, guaranteed liberties, and created new opportunities on its ascent to superpower status, eventually defining a new ideal for the world. (Sentinel HC, 2012)

Peer Review, Research Integrity, and the Governance of Science—Practice, Theory, and Current Discussions
Carl Mitcham, a professor in the Division of Liberal Arts & International Studies at Mines, co-edited this Chinese-English book, which provides an analysis of general ethical and policy issues related to the theory and practice of peer review. The book was published in conjunction with an international workshop of the same themes co-organized by Mitcham at Dalian University of Technology in China, May 21–23, 2012. Both projects were supported in part by Mines’ Hennebach Program in the Humanities, of which Mitcham is the director. (Renmin Press, 2012)

MINING COMPETITION—AT HOME
Mark your calendars and get ready to hitch a ride on an ore cart to the 35th International Intercollegiate Mining Games on the Mines campus March 13–17, 2013. Support our own Miners as the co-ed team defends its first-place win last year in Cornwall, England. (see the summer 2012 issue, p. 17).

More info: www.csmspace.com/events/iimg35/
Join a team with the technology to take on big challenges, the integrity to do it responsibly, and the drive to keep the world moving forward. Are you up to the job?

We’re Hiring Experienced Professionals

Chevron is hiring experienced technical professionals for positions in:

- Drilling
- Completions
- Mechanical Engineering
- Chemical Engineering
- Electrical Engineering
- Civil Engineering
- Subsea Engineering
- Petroleum Engineering
- Earth Science

To learn more about our positions and to apply, visit us online at chevron.com/careers
FACULTY SPOTLIGHT
Taking Work Home

Farmer-scholars were common enough in the days of Thomas Jefferson, who proudly described himself as a “gentleman farmer,” but that is no longer the case. Today, the life of a university professor is generally far removed from that of a modern farmer.

Not so for Tom Davis PhD ’74, a professor of geophysics at Mines, who keeps a foot in both these worlds.

Since beginning his academic career at Mines four decades ago, he’s returned almost every summer to Saskatchewan to help run the family farm, a 2,400-acre spread that includes lands his father, Len Davis, started farming in 1946. These days, Tom and his wife, Pat, get plenty of help from their three sons, and some from their six grandchildren. Even Len, aged 94, spent several days last August running the combine harvester.

On campus, Davis is co-director of the Reservoir Characterization Project, an independently sponsored research consortium whose mission is to develop and apply advanced seismology and associated technologies to characterize complex oil and gas reservoirs.

“The challenge is finding the fractures, and that’s where RCP comes in.”

Established by Davis in the mid-1980s, RCP has been bringing industry together to collaborate on research for almost 30 years. Working closely with his co-director, Bob Benson ’76, MS ’84, PhD ’97, who joined RCP in 1987, the consortium has steadily grown in stature and size. Over the last 10 years, they’ve received a total of about $20 million in funding from an expanding circle of private sponsors—currently 40, up from 25 in 2003.

Joining the consortium gives member companies access to RCP’s diverse research, including reservoir modeling, simulation, and 3D and 4D visualization, much of which draws on RCP’s seismic datasets, claimed to be the most comprehensive in the world.

Davis is proud of the services they offer industry; he’s also proud of the opportunities they offer students. “The research enables students to get their hands dirty in the oil fields, analyze the data and present at conferences,” he says.

After announcing plans to retire in 2015, Davis says he’s looking forward to spending more time on the farm. And perhaps by then oil will have been discovered on the property, which sits squarely on top of the oil-bearing Bakken Formation. The first wells will be drilled this summer.

In the years ahead, he anticipates continuing to help Mines and RCP, devoting time to research and consulting, and continuing to serve on the board of Geospace Technologies, a manufacturer of specialized seismic equipment for the oil and gas industry.

If they do strike oil, will the family continue to farm? “Absolutely,” says Davis, who jokes that they have no plans (or inclination) to pack up and move to Beverly Hills.

So Davis has plenty of changes in store, but one thing will remain the same: He’ll continue to divide his time between subsurface exploration and farming. These worlds are just moving closer together.

DID ARTHUR LAKES DISCOVER T-REX? Arthur Lakes’ role in the discovery of the first T-Rex fragments near Morrison, Colo., in 1874 is captured in a recently released 60-minute documentary titled, “Arthur Lakes: Discovering Dinosaurs.” The documentary includes reenactments and an interview with Bruce Geller, director of the Mines Geology Museum, who describes Lakes as the originator of the museum. Lakes taught geology, drawing and writing at Mines from 1876 until 1893. DVDs are available for $19.95 at the Geology Museum and the Dinosaur Ridge gift shops (dinoridge.org).

Watch an excerpt from the documentary at minesmagazine.com under Web Extras.
ATHLETICS
Orediggers No. 1 in Learfield

In the final fall edition of the NCAA Division II Learfield Sports Director’s Cup standings, Colorado School of Mines ranked No. 1. The Orediggers finished second in men’s cross country, fifth in women’s soccer, eighth in women’s cross country and 17th in both men’s soccer and women’s volleyball.

CROSS COUNTRY. Men took a top-five finish at the NCAA Division II National Championships for a fourth straight year, with a program-best second place showing and five USTFCCCA All-Americans. The women took eighth for their third top-10 finish since 2003.

WOMEN’S SOCCER. The women’s squad captured its second consecutive RMAC Tournament Championships and advanced to the NCAA Division II Championship quarterfinals for the third time in four seasons. The Orediggers achieved a 14-game unbeaten streak—a new school record—concluding the year 18-4-2 overall.

MEN’S SOCCER. The team upset NSCAA No. 1 and previously unbeaten Regis for its second RMAC Tournament Championship in three years. The RMAC regular season runners-up also advanced to the NCAA Division II National Championship tournament for the fourth time in program history, finishing the season 14-5-2 overall.

VOLLEYBALL. Mines posted a program-best 26-7 record in 2012 en route to the program’s first-ever RMAC Championship. After advancing to the NCAA Tournament for the fourth consecutive year, they ended the season with a school-best No. 12 national ranking. Head coach Jamie Skadeland was named the RMAC and Region Coach of the Year, while Jackie Stabell and Melanie Wannamaker both earned All-American honors.

—Colin Bonnicksen

We’re innovators. We produce energy solutions through safe and responsible resource development. We are career-makers. We’re leaders, mentors and partners. Like you, we are on a mission to leave the world a better place than we found it. We are the people of QEP.

QEP Resources, Inc., explores for, produces, gathers, processes and markets natural gas and crude oil in the United States. For more information on career opportunities with QEP, please visit our website at www.qepres.com/careers.
WHAT'S THE NEXT BIG WIN FOR COLORADO SCHOOL OF MINES?

To find out, visit giving.mines.edu/bigwin
See how you can be part of the action!
STUDENT Q&A

Girl Power Propels Motorsports Champion

Navigating her first year at Mines and keeping up with a rigorous kart-racing schedule, Sabré Cook must work hard to stay ahead in these two predominantly male arenas. The freshman studying mechanical engineering has been behind a wheel since her dad first drove her around a racing track in his lap shortly after she learned to walk. Her first major victory came in 2007 with a TAG World Championship win, and last November she became the first-ever woman to win a Superkarts USA national title. After learning about Cook and her accomplishments, we got in touch, wanting to know more.

What captured your interest in engineering? I really got interested in engineering—particularly mechanical—by growing up around motorsports. I enjoy the basics of how things move and work in a system. I also had a great engineering class in high school.

How was your first semester at Mines? It’s been challenging, because it’s hard being away from home and balancing my class load with my racing schedule. But I’m beginning to get the hang of things and am getting better at time management, so I can enjoy it more.

How did you get started in racing? My family had always been involved in it, especially my father, who was a professional motorcyclist. Motorcycles tend to be a bit risky so, of course, he didn’t want his children doing that. Putting us in karting and cars was the compromise.

How do you prepare for a race? My pre-race ritual can be anything from listening to music to motivate me, or reading inspirational quotes I’ve saved, or even taking a quick nap to calm myself down and make my senses alert. But I always take some time alone before I race to think about my plan of execution and to focus on what I need to do. Then, right before I get in the seat, I usually do some ballistic movements or jumping to get my heart rate and my aggression up. This part is vital since, being a girl, I don’t possess as much natural aggression as a male would.

—Amie Chitwood

IN BRIEF

Mines’ section of the Society of Women Engineers (the largest student section in the country at 545 members) received three awards at the organization’s 2012 national conference.

In December, Adjunct Professor William Fleckenstein ’86, MS ’88, PhD ’00 was appointed interim department head of the Petroleum Engineering Department.

Colorado School of Mines and Yale University researchers were awarded $2.6 million by the Department of Energy’s Advanced Research Projects Agency – Energy for a study aimed at lowering the cost of electricity.

The National Science Foundation has awarded Colorado School of Mines a $3.9 million Partnerships for International Research and Education grant to advance knowledge on earth dam and levee sustainability—a topic with broad relevance to issues such as flood protection, clean water supply and hydropower.

The Chinese Ministry of Education awarded a $720,000 grant to support an international solar research partnership that includes Professor Mark Lusk.
MICROMINE sets the standard for mining software. Now taught in the top mining schools around the world.

For more information, contact the North American Regional Office at:

MICROMINE
6500 S. Quebec St., Suite 220
Englewood CO 80111
303.996.6270
mmusa@micromine.com
www.micromine.com
The Best Gigs On Campus

From the intellectual to the adventurous, students employed by Mines report that, along with a paycheck, their work provides balance, fun and intellectual stimulation. Having access to a deep pool of driven, high-achieving young men and women is good for Mines, too.

By Amie Chitwood
Photography by Chelsea Panos

Scooping ice cream or flipping burgers is honorable work for a college student, but some of the job opportunities for Colorado School of Mines students offer a lot more, kick-starting careers, forging community connections and pushing physical limits. On a headcount basis, more than 60 percent of the individuals employed at Mines are students (40 percent undergraduates), and while most may work only a few hours per week, their cumulative contribution to campus operations is substantial. Interested in finding out which undergraduates had the best gig, we took a survey. Here we bring you our top five and comments from others who caught our attention.

Andrew Lee, sophomore
Field of study: Chemical engineering

Brandon Conaway, sophomore
Field of study: Geological engineering

When they’re done solving problems in their calculus classes, Andrew Lee and Brandon Conaway head to the Student Rec Center and invent problems for others to solve—climbing problems. “This job puts you in an environment where you can be creative,” says Conaway. “It gives you the opportunity to set routes that challenge your abilities and other students. I think my favorite part, though, is watching people who have never rock climbed before come in and have a blast.”

Lee, who’s the head route setter, has climbed for 12 years. “I get to spend a lot of time getting paid to do what I do best,” he says. “I also get to climb all the other setters’ problems and tweak them if they need to be adjusted.” When asked for his strategy in establishing routes, Lee doesn’t hesitate: “As an experienced climber, you know what’s next; it’s natural. You start with a move or hold and then devise a set of movements to go into it. It just flows. It’s an art form.”
Hailey Meyer, first-year sophomore
Field of study: Chemistry and chemical engineering

If Hailey Meyer is the future of renewable energy, we have little to worry about. “Thursdays are my favorite—that’s the day that I work,” she gushes with palpable enthusiasm. She’s at Mines because of the Harvey Scholars Program, which she was invited to apply for last summer while in Spain (“that was an adventure and a half, trying to find an English word processor to write my essay”), and is creating polymers, learning about zero-emission anion-exchange fuel cells that use rock minerals as a catalyst instead of precious metals, and worrying about research funding drying up. Meyer landed a dream job working in renewable energy thanks to work-study funds and a connection she made through a Society of Women Engineers Evening with Industry event last September. “I hope NREL hires me some day,” she confides. “It’s comforting to know that I have a network now. I am one of the lucky ones to find what I am passionate about so early in my college career.”

Clancy Harman, senior
Field of study: Mining engineering

Nicole Henderson, junior
Field of study: Mining engineering

When professionals in mine safety and rescue come to Mines for training, Clancy Harman and Nicole Henderson teach and learn from them. “It gives me a chance to see how other mine rescue teams practice their skills and how we can use that experience to improve our own training programs,” says Harman. “A day at work can include research in the office, instructing heavy-lift rescue, or firefighting exercises at Edgar Mine. The variety keeps the job interesting and encourages me to give my best.”

That included his first week on the job, when he was observing and critiquing a U.S. Army rescue team. “I was only 19, but because I was a civilian trainer, these U.S. Army Rangers and sappers called me ‘sir,’” he recalls. “It took some getting used to.”

Henderson helps prepare and teach the safety classes, contacts teams who may be interested, and assists in the training. “Recently I helped teach a heavy-lift class and run our computer simulator with a coal mine rescue team from Oklahoma,” she says. “I’m able to learn a ton while also getting to practice public speaking and presentation skills.”

Lately Henderson and Clancy have been preparing to offer instruction on some brand-new technology that just arrived at the Edgar Mine in December: a refuge chamber for miners trapped underground.

Julia Morin, junior
Field of study: Mechanical engineering, pursuing a minor in computer science

Over the din of chatty, bouncing nine- and ten-year-olds comes Julia Morin’s calm voice. “Today is our last class,” she says. “Nooooo!” the students respond with dismay. Morin is working for the Department of Electrical Engineering and Computer Science teaching after-school classes on what engineers do. It’s a significant time investment: She spends 10–20 hours preparing for each 1.5-hour class, but she loves working with kids and is considering a career in teaching at the high school or college level.

“For the first class, I asked the students to build a house out of straws for the Three Little Pigs,” Morin says. “I hired the kids as my civil engineers and they came up with different designs for a house that would withstand the huffing and puffing of the Big Bad Wolf—some were very clever. The kids had fun blowing their houses over and seeing which house was the best.”

On the day Mines visits the classroom, Morin is introducing an electrical engineering student, Timothy Tribby, who’s going to demonstrate a 1990s-era robot donated to Mines by GM. But that’s for later. Skillfully sliding past the questions that follow (“Do you have a hugging machine here? There’s a hugging machine in China”), she launches into a Q&A recap of the past four weeks, and then transitions into interactive websites and videos that pull all 14 pairs of eyes to the front of the room. Her poise, focus and ability to pace the class are impressive. The students are engaged.
Joshua Lamson, senior
Field of study: Computer Science

Joshua Lamson sits on an elevated rolling chair in front of an array of sound and lighting equipment in the booth that overlooks Bunker Auditorium. There isn’t a moment of silence as he fills the space with gleeful descriptions of amplifiers, new CD equipment, and stories of solving clients’ problems over “the God mic,” a microphone that enables the technician’s voice to be heard throughout the auditorium. “Learning how to work with full sound systems and doing crazy lights for a dance recital is fun, fast-paced work that makes time fly,” Lamson says, adding that the occasional free food is a nice perk. He’s been working events at the Green Center since his freshman year, giving him an eagle’s nest view of numerous professional speakers, plays, concerts and movies that come to campus. It’s more than fun and games, though: “I’ve had the opportunity to meet many professors and other staff and faculty, giving me a leg up in networking on campus.”

What they like best about their jobs

Research assistant for Prof. David Pyles, Chevron Center of Research Excellence Bradley Nuse, senior, geological engineering
I went to Spain last summer to help a doctoral candidate finish his thesis.

Biology teaching assistant Sandra O’Brien, junior, biochemistry
I love biology and I love teaching. Many freshmen struggle with Biological and Environmental Systems 101, and hopefully I make their transition to the learning environment at Mines a little smoother.

Announcer for Mines home sporting events Nate McClain, senior, geological engineering
I’m paid to talk. I get a front row seat to all sporting events, I can build camaraderie with the athletes, and I’ve worked with famous people like Woody Paige (sportswriter and a regular panelist on ESPN’s “Around the Horn”).

Kickboxing instructor, SRC Shawn Miks, junior, petroleum engineering
I teach kickboxing at the Student Rec Center. Nothing’s better than kicking and punching.

CASA peer advisor/mentor Nicole Neals, sophomore, environmental engineering, McBride Honors Program
I like helping new students because I know how overwhelming Mines can be—I feel I make an impact on their success at school.

Circulation desk assistant at Arthur Lakes Library Molly Katolas, senior, environmental engineering
I get first dibs on the new books and, when it’s not busy, I can read or do homework.

Research assistant, ceramic engineering Scott Harper, senior, metallurgical and materials engineering, Harvey Scholar
Last summer I spent 2.5 months at the Indian Institute of Science in Bangalore, continuing research on the kinetics of grain growth in nickel oxide-doped yttria-stabilized zirconia.

Chemical storeroom assistant Jack Stuntz, freshman, chemical and biochemical engineering
I sort and distribute every chemical ordered on campus. We’ve had some interesting ones come through, like one that cost more than $3 million for 1 gram.

Miners magazine photographer Chelsea Panos, sophomore, engineering physics
Photography is a creative outlet in my otherwise very analytical life; this job combines that with my love for this school. It’s an awesome adventure!

And you? Did you have a cool or interesting job when you were a student at Mines? Make your experience a part of this article by going to minesmagazine.com/student_jobs or email magazine@mines.edu.
BE A MEMBER OF THE COLORADO SCHOOL OF MINES ALUMNI ASSOCIATION

INFLUENCE Membership gives alumni a voice by supporting a 117-year-old independent organization entwined with Colorado School of Mines’ past, present and future.

NETWORKING Connect with 26,000 alumni through the CSMAA online directory, Facebook, LinkedIn, Twitter and more than 100 worldwide events each year.

STUDENTS Your support provides students with important professional development programs, mentoring, networking opportunities, and nearly $50,000 in grants and book scholarships annually.

REUNIONS Alumni Weekend, the year’s biggest event for reconnecting with classmates and the campus, is funded in part through membership.

COMMUNICATION Membership dollars keep you in touch with the campus and alumni communities, bringing you Mines magazine, enewsletters and targeted email communications.

FIND OUT MORE AT MINESALUMNI.COM/MEMBERSHIP

CSMAA membership is tax deductible.
Could the United States reverse course from its position as the world’s largest importer of oil and natural gas to become an exporter of these resources? A recent report by the International Energy Agency suggests we can.
When Jennifer Miskimins MS ’00, PhD ’02 received her bachelor’s degree in petroleum engineering in 1990, the United States oil industry was still reeling from the ’80s price collapse, most major companies had shifted their exploration efforts overseas, and those remaining on shore were slowing production and focusing on the lowest-hanging fruit.

Talk of an imminent “peak oil” crisis was escalating. And for bright, forward-thinking engineers, job prospects were bleak. “Nobody in their right mind was going into oil and gas at the time,” recalls Miskimins, an associate professor of petroleum engineering at Mines.

A quarter-century later, the U.S. energy landscape couldn’t look more different. According to a November report by the Paris-based International Energy Agency, “World Energy Outlook 2012,” the United States is poised to be the planet’s largest oil producer by 2020, overtaking Saudi Arabia for the number one slot with a production rate of 11.1 million barrels per day. Already, domestic oil production rose more than 7 percent in 2012, marking the fourth consecutive year of increases, and the largest year-over-year spike since 1951.

Meanwhile, according to the Mines-based Potential Gas Committee, the U.S. currently possesses 1,898 trillion cubic feet of “technically recoverable” natural gas (the highest assessment in the committee’s 46-year-history), a fact that recently prompted the Department of Energy to conclude that the time has come for the country to become an exporter.

As oil imports shrink and energy efficiency efforts expand, the IEA predicts that in net terms, the United States could reach energy self-sufficiency by 2035.

“North America is at the forefront of a sweeping transformation in oil and gas production that will affect all regions of the world,” states IEA’s executive director, Maria Van der Hoeven.

So how did we get here and where are we going next? The answers to both questions have a lot to do with Colorado School of Mines.

“Mines has played a very significant role in this evolution,” says Tom Davis PhD ’74, a professor of geophysics at Mines. “We’ve been involved in everything from developing drilling and stimulation technologies to better understanding the geology of formations to using geophysics to look for natural fractures in the rock and find the best areas to stimulate and drill wells.”

FROM “EASY OIL” TO “HARD OIL”

Roughly 8,000 feet below the Mines campus lies the Niobrara Formation, a dense, 80-million-year-old chunk of shale that stretches across parts of Colorado, Wyoming, Nebraska and Kansas and is believed to contain as much as 6 billion barrels of oil.

Petroleum engineers first tapped into it in 1901 at the Boulder Oil Field between Niwot and Boulder, where crude oil was found bubbling to the surface in a manner reminiscent of a Beverly Hillbillies episode, says Davis. The source of the unusual spring? An underground reservoir filled with oil that had seeped, over the millennia, from the Niobrara Formation.

In the decades that followed, as petroleum engineers tapped into this and numerous other similar pockets of oil, known as “conventional reservoirs,” in Colorado and around the U.S., this “easy oil” was depleted.

Meanwhile, “unconventional reservoirs”—where oil and gas are trapped in tiny pores within the rock where they were formed—remained largely untouched. “We always knew as an industry that the oil and gas were there. We just didn’t have the techniques to get to them,” says Miskimins, who specializes in hydraulic fracturing and reservoir stimulation.

With its blend of petroleum engineers, geologists, geophysicists, chemical engineers and environmental scientists, Mines stepped in early to help solve the puzzle.

“Mines was working on unconventional reservoirs before we even called them unconventional reservoirs,” quips Miskimins, noting how faculty and students have studied hydrocarbons in tight sand systems in Colorado, Wyoming and Utah for decades. “Today, there are probably 60 or 70 people working on these oil and gas issues here, and a lot of step-by-step changes are coming out of it.”

Contrary to popular belief, hydraulic fracturing is nothing new. In 1947, engineers at the Hugoton gas field in western Kansas became the first in the world to pump fluid down a well in an effort to crack the surrounding rock, boost its permeability and increase flow. By the 1980s, about 40 percent of all wells were fractured.

In the 1980s—thanks in part to drilling motor improvements and subsurface mapping technologies that came out of Mines—horizontal drilling was adopted by the energy industry. Energy companies began drilling horizontally to reach their targets, and a handful began experimenting with fracturing rock along the horizontal wellbore.

Ultimately, the successful integration of horizontal drilling and multi-stage fracture stimulation transformed the industry, boosting the nation’s inventory of recoverable fossil energy resources practically overnight. The Potential Gas Committee’s biennial report in 2009 reflected a 40 percent
jump in “technically recoverable natural gas” reserves over the 2007 report. And in 2010, proved reserves of recoverable U.S. oil and natural gas rose by the highest amounts ever recorded since the U.S. Energy Information Administration began publishing estimates in 1977.

Technology changed the economics as well. Within a few years, unconventional oil resources that were previously uneconomic became spectacularly profitable. “Wells that used to produce 30 to 50 barrels of oil per day are producing 1,000 per day,” says Steve Sonnenberg PhD ’81, a professor of petroleum geology at Mines.

CONTRIBUTIONS THEN AND NOW

On a snowy morning in 1985, Davis and an interdisciplinary team of geologists and geophysicists began to set up equipment at Silo Field in Wyoming to record seismic waves and gain a clearer picture of what the reservoir thousands of feet below looked like. Their efforts led to the first detailed 3D map of natural subsurface fractures and faults within an oil field, and the information was used to guide the drilling of some of the earliest horizontal wells.

It was one of the first major projects undertaken by the Reservoir Characterization Project, a research consortium at Mines formed by Davis that has since emerged as an industry leader in a technique called 4D seismology, which involves taking regular 3D seismic snapshots of the same reservoir over time (the fourth dimension) and creating time-lapse video sequences of oil or gas migrating through rock as hydrocarbons are pumped out.

The approach has given operators unprecedented insight into the effect of their stimulation efforts, and now, having accumulated the largest seismic dataset in the world, their models are widely used to guide drilling and stimulation efforts. “We can determine the best place to sink a well, see the effectiveness of hydraulic fracturing, and monitor the area over time to see what happens to the subsurface rock,” says Davis, noting that the approach can also help avoid induced earthquakes and water contamination—two of the biggest concerns raised by opponents of hydraulic fracturing. “We can predict and avoid areas where we have the potential to cause harm.”

Since getting her PhD at Mines in 2002, Miskimins has been working with industry colleagues, fellow researchers and students to help determine what materials work best as proppants (particles mixed into hydraulic fracturing fluids that prop open cracks in fractured rock and facilitate the flow of oil and gas) and where and how to stimulate the well for maximum efficiency. In 2003, she helped launch the Fracturing, Acidizing, Stimulation Technologies (FAST) consortium, the only university-based hydraulic fracturing consortium in the nation.

Meanwhile, Sonnenberg works with industry to make the most of the oil and gas...
resources in the Rocky Mountain region by directing the Niobrara Research Consortium, a collective of roughly 30 companies and a few dozen students who study everything from seismic reservoir modeling to fracturing techniques.

Professor Azra Tutuncu, who holds the Harry D. Campbell Distinguished Chair in Petroleum Engineering, directs the university’s Unconventional Natural Gas and Oil Institute, which launched a consortium in 2012 to support unconventional natural gas and oil exploration and development. UNGI also offers educational programs for students, policy makers and regulators.

PROMISE AND CHALLENGES IN THE FUTURE

Dismissing popular environmental concerns about hydraulic fracturing as unfounded, the IEA’s report assumes uninterrupted proliferation of the technology. However, every faculty member and alum interviewed for this story concedes that the industry faces a significant public relations challenge.

“We have to assure people that this is not a technology to fear,” says Davis.

Miskimins often gives free presentations to community groups to explain the pros and cons of hydraulic fracturing, and to dispel what she sees as widespread misinformation. She explains that because the unconventional reservoirs being tapped are so far below the surface, the chance of groundwater contamination is relatively slim. She also says the amount of water used in hydraulic fracturing has been somewhat overplayed in the media.

“But if public perception is that it is a bad thing to be using all this water, then industry needs to be looking for other options,” she says.

In August, Mines professor Yu-Shu Wu, Miskimins, and Xiaolong Yin (an assistant professor at Mines) were awarded a $4.66 million grant, funded jointly by the Department of Energy and the petroleum industry, to explore using rapid cooling to fracture rock instead of water.

“The idea is to use liquid nitrogen, which is very cold, to generate fractures,” explains Wu. “After a couple of hours, when the temperature warms back up, it evaporates.” That reduces the risk of contaminating groundwater and of damaging the formation itself, which lingering water from hydraulic fracturing can do. “It’s really early days, but if it works, it could change the industry,” says Wu.

Along similar lines, Wu, Davis and dozens of other Mines faculty and students are exploring ways to use CO2 emitted from coal-fired power plants as a fracturing fluid. In addition to addressing water use concerns, the CO2 would largely remain sequestered in the subsurface rather than going into the atmosphere.

On the natural gas front, one area that scientists at Mines’ Center for Hydrate Research are pursuing is how fuel might one day be transported in crystalline hydrate form. Currently, natural gas is transported by ship as a liquid that must be kept at a frigid −260°F. If systems could be developed to efficiently create natural gas hydrate, which remains stable at a balmy −4°F, the energy savings could be considerable. The trade-off is that the hydrate is much less dense than liquified natural gas. “The key is making these hydrate crystals in a way that is very efficient,” says Carolyn Koh, a professor at Mines and co-director of the center. “It involves fundamental science with important applications.”

In the end, faculty members say, the greatest contribution the school has made to the energy industry is to turn out graduates with a broad-based interdisciplinary understanding of oil and gas, which they apply to everything from exploration to policy making.

For those graduating today, the future looks bright. “We are unique, and that is recognized by industry,” says Sonnenberg. “One hundred percent of the students coming out of our programs are getting hired right now.”
Two summers ago on I-70, about a mile from the highest point on the nation’s Interstate Highway System, a dip in the pavement grew so large that cars were going airborne and getting tossed out of their lanes. Fortunately, no one crashed before the Colorado Department of Transportation made repairs, but drivers shouldn’t rest too easy; the Big Bump will be back.

Located about a mile west of the Eisenhower Tunnel in Summit County, the Big Bump is a perennial headache for CDOT. The dip forms in the eastbound lanes on a slope-side stretch of highway perched hundreds of feet above Straight Creek. As spring snowmelt soaks underlying layers of rock and soil, the roadbed sinks a few inches every year. When it gets bad enough, CDOT repaves to level things out, but come the following June, the Big Bump returns.

“At that point, the asphalt is now 6 to 7 feet deep,” says Ning Lu, a professor in the Department of Civil and Environmental Engineering, who refers to the slippage on I-70 as a slow-motion landslide. “CDOT keeps laying over more asphalt, but that’s just a short-term solution. With each passing year, the chance of a catastrophic event grows, and finding a long-term sustainable engineering solution is critical.”

CDOT turned to Lu, an international expert on landslides, in 2009. Since then, he’s partnered with the state’s engineers to gather baseline data about slope stability, with an eye toward developing a plan for a permanent fix.
“We started a field investigation there three years ago,” Lu says. “We put in sensors to measure embankment movement and groundwater table fluctuation in the slope over time. The main purpose of our research is to understand the configuration of the water table and soil—what type of soil is there, what’s happening with the water table.”

Lu found a clear pattern: “Stabilize, slide, stabilize, slide. But at some point, rather than 2 inches of subsidence in a year, there could be 2 feet of subsidence, and the highway would not be functional.”

That’s an outcome both Lu and CDOT hope to prevent.

Over this stretch of I-70, the eastbound lanes are built on fill excavated from the tunnel in the 1970s. There is no subsidence on the westbound lanes, which sit more directly over bedrock.

Located at 11,000 feet, winter snowfall accumulations are considerable. By early spring, drifts at the edge of the highway often stand more than 10 feet high, and a snow-laden mountainside rises another 1,500 feet to the north.

“All that snow melts within a couple of weeks in the spring,” explains Lu, adding that the topography funnels surface runoff directly toward the area of the Big Bump. “As subsurface moisture content increases, the water table rises rapidly and the slope loses stability. Our monitoring results indicate that the water table rises by as much as 30 feet within the two-week snowmelt period.” It doesn’t help that there are two springs nearby.

“We’re looking at a dynamic process that extends from the surface to the water table and the underlying bedrock,” Lu says. “Precipitation alters the stress inside a slope, and when the stress state reaches its limit along the sliding surface, there will be a landslide. Sometimes it could take a few hours. Other times it could be weeks or years.”

SEARCHING FOR A SUSTAINABLE SOLUTION

The highway has sunk on a seasonal basis since it was completed in the 1970s. One of the primary concerns is that this consistent movement over four decades has defined a shear plane—an interface between bedrock and the material supporting the road that gets weaker with each spring melt. “It is likely that at some point in the future, accelerated sliding is going to occur if effective measures are not taken,” says Lu.

Over the years, CDOT has looked at various options for permanently stabilizing the slope. One is to keep the area dry by channeling surface runoff away from the slide area and installing a network of subsurface drains. With adequate drainage, efforts could then be made to reinforce unstable soils with underground structures.

Another idea is to stack the eastbound and westbound lanes in an overhang configuration—as in Glenwood Canyon—so that both directions lie atop stable bedrock, but complex construction on this scale at this elevation would be very costly.

In addition, projects of this magnitude would necessitate closing I-70 for several months and diverting traffic over Loveland Pass, which would result in hours of delays, have a national impact on transit and shipping, and wreak havoc
with state commerce and tourism. Such economic costs need to be considered along with the cost of construction.

“It would be very expensive to fix,” says Mark Vessely ’94, a former CDOT engineer who now works for the consulting firm Shannon and Wilson.

With no viable alternatives, CDOT resorted to an asphalt Band-Aid until last spring, when Vessely and his company devised plans to drill a series of shafts into the thick asphalt pad at the Big Bump and fill the holes with lightweight cellular concrete. “It reduces the weight and stress on top of the slide, and fills voids and loose soil beneath the pavement,” says Vessely. “The goal is to make some improvements and lower CDOT’s year-to-year maintenance costs, but it’s an interim measure. The long-term fix is still undecided.”

PROBING THE ROCKIES

CDOT spokesperson Bob Wilson says the department brought in Lu to help because of his insight and experience. Lu has studied landslides around the world as part of an arrangement between Mines and the U.S. Geological Survey’s Landslide Science and Engineering Partnership.

The team monitors numerous active landslide sites in Washington, Oregon, California, North Carolina and Colorado in an effort to develop simulators and modeling tools. When a major slide occurs anywhere in the world, Lu and his USGS colleagues are generally among the first investigators on the scene.

“The response team goes to take samples and data, make assessments, evaluate mechanisms, and find out how much stress and what particular type of soils were involved,” says Lu, who points out that landslides are becoming more frequent. The reason? The primary culprit is global climate change, he says. More energy in the atmosphere leads to more intense storms and precipitation.

“Any natural slope you see today is in a delicate equilibrium that has evolved over thousands of years,” Lu explains. “If you change the pattern, it’s going to alter the balance and possibly trigger a landslide.” For this to happen, the total volume of precipitation is less relevant than the intensity. “A slow rain will produce different effects on a slope than an equivalent amount of rain that falls more quickly.”

Lu’s new book, “Hillslope Hydrology and Stability,” published by Cambridge University Press and co-authored with USGS colleague Jonathan Godt, offers a comprehensive set of global landslide data, along with a new hydrological and mechanical framework for predicting and analyzing the likelihood of a major slide on a given hill slope or region. It answers questions not covered in his 2004 book, “Unsaturated Soil Mechanics,” published by John Wiley and Sons, co-authored with William Likos PhD ’00, a professor at University of Wisconsin–Madison, which has become a go-to reference for civil engineers around the world. Still, he says, landslide forecasting has lots of room for improvement.

CDOT renewed the research contract with Lu and Mines Associate Teaching Professor Alexandra Wayllace for another three years. During that time, the asphalt at the Big Bump may grow another foot deeper. But Lu’s body of soil and water data will grow deeper as well and, he hopes, yield the information necessary to formulate a strong long-term solution.

What are the chances they’ll be able to finesse the problem and avoid massive disruption and expense? “Once we know more about subsurface fluid flow and stress variation patterns, we’ll be in a better position to know if conditions can be changed to stabilize the slope in a natural setting without major overhaul,” Lu says. “The key may be controlling groundwater table levels within the highway embankment. That could happen, and it could be economical and sustainable.”

Engineers at CDOT certainly hope so. “We’ve been patching this over for too many years,” says CDOT’s Wilson. “Eventually you have to fix what’s broken.”
Across the US, from Colorado, North Dakota and the Rockies, to the Permian Basin and Mid Continent, Whiting Petroleum Teams are bringing record results.

Our operational expertise extends from hydraulic fracturing innovations, to state-of-the-art drilling rigs, solving transportation bottlenecks to maximizing recovery at our CO2 floods by innovation and relentless striving for improvement.

Whiting’s asset portfolio provides a singular growth platform for years to come.

A proud member of COGA, Whiting vigorously supports the association’s activities and membership in the face of new and expanding challenges to our industry in the 21st century.

Now Hiring:
Petroleum Engineers
Civil Engineers
Mechanical Engineers

Please be sure to visit our careers website at www.whiting.com to view open postings and apply. You can also view our exciting new video tour of Whiting Petroleum’s operations.
ALUMNI NETWORK

STUDENT SUPPORT

Generous Legacies

More than $14,000 was awarded to 19 freshmen and seniors at a reception on November 2, 2012, in the Ben H. Parker Student Center. Attended by more than 30 family members and friends, the event marked a longstanding alumni association tradition of offering special financial assistance to the children and grandchildren of members. Called Legacy Grants, students are eligible for assistance during their first and last years at Mines, the amount fluctuating based on donations to CSMAA’s Student Financial Assistance Fund during the previous fiscal year. This fall, students came away with checks for $750 each.

To qualify, the sponsoring parent or grandparent must have been an active, paying member of the alumni association for the last five consecutive years. After President Bill Scoggins welcomed family members to campus and thanked them for their loyalty to the school and CSMAA, Anita Pariseau, executive director of CSMAA, presented awards.

CAREER DEVELOPMENT

Securing Your Next Move

On November 12, 2012, the Colorado School of Mines Alumni Association’s ongoing Professional Development Series featured “Securing Your Next Move,” a panel discussion moderated by Cooper Swenson MS ’04. The panel included professional recruiters Dave White ’81 and Leslie O’Connor, and seasoned business executive Becky O’Rourke.

About 45 alumni attended the event, and another 40 tuned in to the webcast, posing questions along with the live audience.

FIVE TAKEAWAYS FROM THE TALK

1. Network: Seventy percent of jobs come through personal contacts. Be strategic about nurturing your personal, professional and Mines connections.

2. Résumés: Every application should include a résumé tailored for that specific job and a list of relevant accomplishments.

3. Elevator speech: Be ready to encapsulate, in about 30 seconds, your goals, what you are passionate about, and what you’ve accomplished.

4. Keep perspective: Know where you want to end up in your career, and make sure your next move brings you closer.

5. Keep moving: Nothing will come of nothing. If you are stuck, find help and get moving.
Meet the Colorado School of Mines Alumni Association Board of Directors

Have you ever wondered what the CSMAA board does? In this third of four installments, we highlight each director and his or her service to the alumni community.

Jafar Tabaian ’00
Crested Butte, Colo.
Secretary
Jafar is a member of the executive committee, which meets regularly to discuss critical strategic and budgetary issues. He earned a bachelor’s degree in engineering, mechanical specialty, and a minor in economics from Mines, where he played football and served as assistant football coach under Bob Stitt from 2001 to 2004. Jafar is now principal of North Arrow Consulting, which serves the extractive, financial services and renewable energy industries.

Darek Bruzgo ’95
Littleton, Colo.
Director, Alumni Programming (Colorado)
A life member of the alumni association, Darek has volunteered for the CSMAA Denver Metro Committee since 2008 and helped to create the annual Bike Bike Que event. On the board, he works to expand alumni engagement throughout Colorado. In 1996, after earning his bachelor’s degree in engineering, mechanical specialty, he started D&R CNC Machining with his brother, Robert Bruzgo ’95. He has taught Senior Design at Mines as an adjunct instructor since 2010.

Matthew Showalter ’99
Parker, Colo.
Director, Communications
Matt earned a bachelor’s degree in petroleum engineering from Mines. With 20 years of experience in technology and engineering, he is now a co-founder and CIO for Swiftpage, a software development company focused on email marketing, social media and contact management. His experience in this field is helping structure CSMAA’s approach to communications and promoting two-way dialogue among alumni and the university.

William Warfield ’75
Sacramento, Calif.
Director, Alumni Recognition
When he graduated from Mines with a professional degree in mining engineering, Bill was following in the footsteps of three relatives, including his father. Today, he looks for opportunities to recognize alumni who have distinguished themselves in their industries or through notable contributions to the university or alumni association. He has worked in the mining industry for more than 30 years, most recently for Atlas Copco CMT USA, where he is manager of business development–geotechnical drilling and exploration.

Find full bios for board members online at minesalumni.com/board. Interested in getting involved with the alumni association? Learn about the opportunities at minesalumni.com/volunteer.
1959
John Stout

1960
Gerald L. Askevold is a realtor for West Venture Real Estate and lives in Whitefish, MT.

1966
Charles R. Arnett is a partner for Silver Lake Analytical Services and lives in Durango, CO.

1967
Stephen P. Collings is a director for Cam-econo Resources and lives in Morrison, CO.
Stephen H. Maytag is a chemical engineer for RT Patterson and lives in Carnegie, PA.

1968
Neil Murdock

1969
John A. Geis is working for Hukari Ascendent and lives in Arvada, CO.
Thomas O. Hiscox is a technical advisor for Unimin and lives in Payson, AZ.
George Quinn retired from the Idaho Dept. of Water Resources and lives in Bamberg, Germany.

1970
David Scriven
Robert D. Stimson is a superintendent for Wilcox & Contracting and lives in Sedona, AZ.

1971
James R. Black is working for Kestrel Engineering and lives in Nine Mile Falls, WA.
Anthony L. Morroni is a SVP for Carollo Engineers and lives in Littleton, CO.

1972
Richard A. Cadle is a senior process consultant for Freece and Nichols and lives in Arlington, TX.
John Darrow
David J. Love is the president of Belt Collins and lives in Louisville, CO.
Raymond Lowrie
Clyde H. Peppin is a senior operations manager for Coeur d’Alene Mines and lives in Hayden, ID.

1973
Joel S. Forrest is a senior technical staff member, analytical auger lab for HGST, a Western Digital Company, and lives in San Jose, CA.
Thomas B. Huzzey is a waterflood advisor for Chevron and lives in Sugar Land, TX.

1974
Javier A. Arce is a process engineer for FMC and lives in Green River, WY.
Albert C. Compton is a director – project engineering for Chesapeake Energy and lives in Shreveport, LA.
Carol V. Fuchs is a business manager for Better Homes & Gardens Realty Partners and lives in West Linn, OR.

1975
Thomas L. Brenninger is a facilities engineer for Marathon Oil and lives in Edmond, OK.

1976
Dennis L. Casto is a VP of engineering operations for AKA Energy and lives in Durango, CO.
William B. Goodhard is a member of the board of directors for Gryphon Gold and lives in Centennial, CO.
Robert Morroni

1977
James M. Gindelberger is an environmental scientist for the EPA and lives in Denver, CO.
Claudio Manzolillo
Frank H. Merrill is a senior programmer for WillPoint and lives in Denver, CO.
Mark J. Norden is an assistant to the president for E. Dillon & Co. and lives in Abingdon, VA.
William A. Sargent is a China Energy commercial consultant for Chevron and lives in San Ramon, CA.
Sidney J. Stone III is a maintenance engineer for BP America and lives in Temperance, MI.
William H. Strickland is a project engineer for Hecla Mining and lives in Columbus, MT.

1978
Thomas Flaherty

1979
Stanley J. Gradisar is of counsel for Sheridan Ross and lives in Castle Rock, CO.
Richard M. Karcich is a development engineer for Microsoft and lives in Centennial, CO.
Richard P. Mignogna is a principal consultant for Renewable & Alternative Energy Management and lives in Golden, CO.
Peter A. Nielsen is the president/mine manager of Camino Real Fuels and lives in Dallas, TX.
Andrew J. Pfaff Jr. is a country manager for EOG Resources and lives in Silverthorne, CO.
John A. L. Rense is a sector leader, engineer for Nana Development and lives in Anchorage, AK.

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

MAKING MERRY
Almost 300 guests attended CSMAA’s annual Denver Metro Holiday Party in December, which was held in the Geology Museum. Here former CSMAA president Roger Newell MS ’71 (center) chats with George ’53 and Susan Mitchell.

Bruce H. Pike is a project manager for Halliburton and lives in Houston, TX.
James E. Pittinger is a metallurgist – copper – for Pittinger Services and lives in Evergreen, CO.
Robert K. Spangler II is a metallurgical engineer for ArcelorMittal USA and lives in Saint John, IN.

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

@ denotes an individual who has recently posted photos at minesalumni.com
We are looking for rare and unique resources with great potential for development, especially in emerging countries such as China, Russia and Ukraine. If you are action-oriented, strategic thinker, with a strong spirit of entrepreneurship, we offer a unique place to work that allows you to thrive. Our mission is simple: to add value to our customers’ products or processes. Imerys includes well-known brands such as Damrec, World Minerals, Imerys Ceramics & Calderys. With Imerys, World Leader of Industrial Minerals, you will transform to perform.
Chris R. Roberts is a manager – synthetic chemistry for Corden Pharmà Colorado and lives in Berthoud, CO.
Michael S. Ryan is a senior principal consultant for NTT Data and lives in Gloucester Point, VA.
Jeffry P. Sattler is a SVP, engineering for West Engineering Services and lives in Houston, TX.
Francine D. Schlaks is working for the IRS and in private practice and lives in Las Vegas, NV.
Mitchell R. Whatley is a VP of engineering for Sidewinder Drilling and lives in Southlake, TX.
Janice D. Williams is a deputy director of waste removal and tank closing for CH2M Hill and lives in Pasco, WA.

1979
Catherine E. Armstead is a principal engineer for Landmark Environmental and lives in Pine, CO.
George T. Dunn is a SVP/development executive for Newfield Exploration and lives in The Woodlands, TX.
Dwayne H. Edington II is a senior hydrogeologist for Schlumberger and lives in Highlands Ranch, CO.
Nancy J. House is a geophysical advisor for Chevron and lives in Littleton, CO.
Laurence G. Martin is a VP, exploration for Comstock Mining and lives in Sparks, NV.
Bruce A. Neuschaefer is a program director for ERM – West and lives in Laguna Niguel, CA.
Dennis Pieters
Paul J. Plante is a project manager for Maine Yankee and lives in Yarmouth, ME.
Jerry Rotz

1980
Timothy A. Barbari is an associate provost for graduate affairs for Boston University and lives in Brookline, MA.
Roger C. Carter is a project engineering manager for Lyondell-Basell and lives in League City, TX.
Terry L. Mead is a global wellsite connectivity manager for Schlumberger and lives in Austin, TX.
Javan D. Ottoson is the president and COO of SM Energy and lives in Eaton, CO.
Michael H. Partin Jr. is a drilling engineering team leader for BP and lives in Houston, TX.
Donna M. Rillings is a materials engineer for Lockheed Martin and lives in Conifer, CO.
Mustafa H. Sagiroglu is working for Info- bionic and lives in Bellevue, WA.
Rose M. Wheeler is an accounting manager for PreCheck and lives in Houston, TX.

1981
Mark E. Flatland Alan C. Harrison Frederick C. Heneman Claude H. Joseph Susan M. Perrell Candace S. Sulzbach

1982

1983

1984
J. Patrick Adcock Peter R. Bierbaum David H. Brown Kelly E. Cook Steven C. Gallington Gerald S. Lane Mark B. Mathisen Ty S. McKercher Gregory Norman Smallwood Kevin L. Stansbury Richard R. Van Dok Steven W. Yopp

1985

1986
Andrew J. Bond Peggy Christie Mark A. Degenhart Bennett D. Edgar Susan Flynn Masami Hato Elizabeth L. Heatwole Hugh B. Miller Mark L. Peak Samuel D. Utton

1987
Deborah H. Beck Christopher M. Chima Kelly P. Coleman Teresa L. Nealon John A. Starck Thomas E. Street Richard G. Weber

1988

1989

1990
John H. Marino Albert B. Schwarzkopf IV Shirley A. Smuda

1991

1992
Brett K. Brunke Debra K. Brunke Peter A. Christnacht John D. Dugas John B. Fairbanks Francesca Fazzari Oguz Gunduz Edward D. LaFehr Jonathan S. Miller Damon T. Parker Alisa L. Ramey Susan D. Rankin

1993

1994

Editor’s Note: Alumni from the classes of 1981 to 2012 who have recent updates online or have uploaded photos to mineralsalumni.com over the last four months are listed below. In addition, all class notes published in Mines magazine in the last four years are available on the site. When you visit, if you take a few moments to enter your latest information and upload some photos, we’ll list your name here in the next issue. For online viewing instructions, click on Class Notes at minesmagazine.com.
Graduating in the middle of the Great Depression, members of the Class of 1935 faced bleak job prospects. But E. Keith Staley ’35, who celebrated his 100th birthday on January 13 in Oro Valley, Ariz., points out that life had been tough for some time. For example, to return home to Clayton, N.M., from Golden at the end of each semester, he would hop a freight train heading south out of the Denver rail yard. “Sometimes there were as many as 300 people jumping into different cars,” recalls Staley, who relied on woolen underwear and a heavy sheepskin coat to stay warm during the long winter trips.

After graduating with a professional degree in mining engineering, he hitchhiked around the country in search of work—any work. It wasn’t until 1937 that his luck really changed. At an intersection far from Denver, he had a chance encounter with classmate Chuck Michaels ’35. The two were hitchhiking in opposite directions, both chasing rumors of work. After comparing notes, Michaels’ sounded more promising—Phelps Dodge was opening a new open pit mine in Morenci, Ariz.—so the two teamed up and headed south.

The first skilled job he was assigned involved surveying the rail line that took ore from the pit to the mill. Quickly earning his bosses’ confidence, he was supervising a team of 60 by 1940.

During World War II, stationed in Alaska with the U.S. Army Corps of Engineers, he rose to the rank of major, building, among other things, a 20-mile stretch of railroad, a sawmill and a wastewater system.

Unlike his graduation a decade earlier, the economy was booming when he emerged from the military after World War II. He decided to reenter the mining industry, this time going underground. Staley says that sinking mine shafts gave him more satisfaction than anything else in his professional life. The first was in Eureka, Nev., in 1945, and the deepest was a 5,000-foot shaft in Arizona. He was 63 when he retired as general manager of one of the largest underground copper mines in the world, located in San Manual, Ariz.

Since then he’s had plenty of time to enjoy his family and friends. Keith and his first wife, Edith, had three sons. His second wife, Frances, died several years ago; she is survived by two daughters. His ties to Mines run deep: Several family members have attended, including an uncle, George W. Mitchell ’23, and cousins J. Harold Mitchell ’36 and George W. Mitchell Jr. ’53.

He’s also had lots of time to pursue his hobbies: gardening, lapidary and silversmithing. To this day, he spends time in his workshop, cutting and polishing rough stones for silver bolo ties, bracelets and pendants.

—Nick Sutcliffe

ALUMNUS PROFILE

A Miner’s Century

Keith Staley

found his calling in mining, where he spent nearly his entire career. In the current photo below, he wears a bolo tie that he made as part of his silversmithing hobby.

DISTINGUISHED CENTENARIANS

According to our records, Staley joins this elite group of Mines alumni centenarians: Edward Carter ’38, born May 1912; John Tower ’35, born August 1912; Herbert Heckt ’36, born December 1912. Candidates up for induction this year include Lee Talbert ’36, born August 1913; Donald Cadwell ’39, born September 1913; and George Jenkin ’38, born October 1913.
ALUMNA PROFILE

Work in Nuclear Reactor Fuels Earns Alumna Presidential Award

In 2012, Amy Clarke MS ’02, PhD ’06 produced a metallurgical first: movies that show bulk metallic alloys in the process of crystallizing. It might not sound like blockbuster footage, but it helped earn her a trip to the White House and one of the nation’s top awards for young scientists—a Presidential Early Career Award for Scientists and Engineers (PECASE). Clarke is currently a research and development scientist at Los Alamos National Laboratory.

In addition to recognizing Clarke’s groundbreaking research on how the strength of a uranium-niobium alloy varies depending on the orientation of the crystalline structure, the award cites her work “using in-situ solidification and proton radiography with potential to finally resolve liquid-solid processing questions.” Clarke explains, “We’re now able to see inside a material while it’s solidifying. We’re able to see the microstructure develop, which ultimately can tell us a lot about how processing parameters will influence properties; it has a lot of potential for industrially important materials.”

In addition to honoring her research skills, the PECASE award recognizes Clarke for mentoring future metallurgists. She remains active in the steel center (of which Los Alamos National Laboratory is a sponsor), traveling to Mines routinely to collaborate with graduate students.

“That’s something I truly appreciated about the steel center,” she says. “As a student, I had the unique opportunity to interact with scientists from industry and Los Alamos National Laboratory. I’ve been really lucky to collaborate with these individuals.”

Clarke is hardly through investigating steel: The next step, she says, is using feedback from real-time monitoring to make in-process parameter changes that modulate microstructure evolution to achieve a desired set of properties. Her PECASE—which comes with five years of funding—will help her continue this work. And she will almost certainly remain a familiar face at the steel center, mentoring students and continuing her collaborations.

“The steel center is one of a kind,” Clarke says. “It integrates academic, industry and lab activities in a way that no other center really does.”

—Larry Borowsky
Make an explosive impact for Mines’ hardworking and inquisitive students by maximizing your financial support.

MATCH AND MAXIMIZE!

Find out whether your or your spouse’s employer will double, or even triple, your investment in Mines.

Visit matchinggifts.com/mines or call 303.273.3275 for more information.

When you leverage your generosity with matching gifts, you are recognized for the combined total of your gift and your employer’s match.
At 6’2” and 275 pounds, with a slick, bald head, neatly trimmed goatee and several tattoos stretching across his biceps, Shane Carwin ’04 looks the part of an Ultimate Fighting champion. But get him outside the metal cage, where he is known for his hard, tactical punches, and you discover a soft-spoken engineer and a dedicated family man.

“I am just an average, normal guy who goes to work every day,” says Carwin, 38, during a January lunch break from his day job with the North Weld County Water District in Greeley.

Since entering the ring for his first mixed martial arts (MMA) competition in 2005, Carwin has led a double life: creating maps and computer models of water systems by day, and climbing the ranks in what is considered one of the nation’s most brutal professional sports by night. In March 2010, he was awarded the interim title of the nation’s Ultimate Fighting Heavyweight Champion, and during the fall of 2012, he starred in the hit FX reality show, “The Ultimate Fighter,” which averaged 850,000 viewers over 11 episodes.

But unlike his fellow fighters—many of whom don’t have jobs outside the sport—Carwin sees himself first as an engineer, and even credits his schooling for his athletic success.

“Just being mentally strong is one of my best attributes, and that was definitely tested at Mines,” he says. “There was a ton of pressure. I had to fight for what I wanted.”

The youngest of three boys, Carwin was raised by a single mom in Greeley, where he developed a love of sports and an interest in engineering at an early age. After he applied to Mines from high school without success, he went to Western State College, where he quickly became a wrestling and football star.

He was considered a hot prospect for the NFL draft in 1998 until he injured his back, but still had the opportunity to play professionally for the New England Sea Wolves. However, urged on by his mother, he opted instead to knock on Mines’ door again.

“By the time I got to Mines, I figured I was done with athletics,” says Carwin. “I just buckled down.”

One year after graduating and landing a job with Weld County, Carwin had a friend invite him to step in for an MMA fighter who had to back out last-minute. “I’d never really even been in a fight,” he recalls. “Everyone thought I was crazy and I was going to get killed. It was the big joke around the office.”

Before a screaming crowd at an American Indian reservation in California, a nervous Carwin stepped into the cage and found his new calling. “I loved it. I felt like an athlete again,” he says.

He won his first 11 fights in the first round.

A technically challenging mix of wrestling, boxing and martial arts, the sport was once banned from venues across the country due to a barbaric anything-goes reputation. But thanks to new rules and a cleaner image, it is now one of the fastest-growing professional sports in the country. In 2010, 1.16 million pay-per-view buys were recorded for UFC 116, where Carwin was one of four headlining fighters.

With his rare combination of massive physique, agility, sharp intellect and calm demeanor, Carwin—known as “The Engineer”—quickly became one of its golden boys.

“When it comes to training, he catches things so quickly because he is just so intelligent,” says Trevor Wittman, owner of Grudge Training Center in Denver, where Carwin trains. “And he is the most laid-back guy ever.”

Maintaining two careers at once leaves his schedule anything but laid back: He works in Greeley from 7 a.m. to 4 p.m. and then drives to Denver to train from 5 to 9 p.m. Most nights he arrives home around 10:30 p.m.

When FX called to see if he could come to Las Vegas for six weeks to star in the reality show, Carwin was able to clear it with his board of directors, but it was no vacation. During production, while others in the show settled in for the evening after a day of filming, he was updating hydraulic models and designing pump stations on his laptop.

“Everyone thought I was crazy and I was going to get killed. It was the big joke around the office.”

Why not just fight for a living?

With six bulging discs, a bum knee and a litany of surgeries behind him, Carwin knows better.

“I have a wife and two kids, and I have to make sure they are taken care of,” says Carwin, who has their three names, along with a cross in honor of his faith, tattooed on his arm. “I don’t think that any type of professional sport is a lifelong career. Besides, I went to school for a reason. I love my job.”

—Lisa Marshall
Innovative solutions for the underground mining industry.

Frontier-Kemper provides a wide range of construction services and related manufactured products. We build tunnels for highways, railroads, subways and rapid transit systems. We construct tunnels, shafts, and other facilities for water supply and wastewater transport. We develop and equip underground mines for coal, salt, copper, and other minerals. Our FKC-Lake Shore Division designs and installs innovative hoisting, elevator, and vertical conveyance systems. Simply put, we are builders, and our goal is to be the industry’s best source – and best value – for complete turn-key construction services and products.

WEDDING BELLS Josh Morin ’10 married Merissa Reeder on August 13, 2011, in Colorado Springs, Colo. Josh’s sister, Julia Morin, currently a junior at Mines (see “The Best Gigs on Campus,” p. 18), was in the wedding party and Sean Zeeck ’10 attended.

HIGH-FLYING HOBBY Steve Anderson ’75 says it took him four years to build “Miss Mimi,” a Van’s RV-7A experimental sport plane. With a cruising speed of 200 mph, it can perform aerobatics and land on primitive grass airstrips, which is great for camping (what he and his dog, Cherie, were up to here). He says that given the time and effort required to build a plane, enthusiasts refer to these projects as “aluminum mistresses,” but he named the plane after his biggest supporter, his wife.
AIRPLANE ROMANCE After falling in love on the plane ride to their research trip abroad in Norway, Matt Bergren ’09 and Heather Oertli ’10 were married in Littleton, Colo., on May 19, 2012, exactly three years after they began dating. Three Mines alumni were in the wedding party: Robert Bergren ’06, Clifton Oertli ’07, MS ’09 and Alexandra (Swanson) Clymer ’10.

HONORING DIVERSITY Chontel Trujillo ’00 (pictured here with IBM General Manager Adalio Sanchez) received the 2012 Society of Hispanic Professional Engineers’ Diversity Award for her work in the advancement of Hispanic individuals through job promotions, business development and community activities at IBM. Trujillo is manager of IBM’s Boulder Planning, Facility Contracts and Environmental Engineering team and is a mentor to a Mines student. Her husband, Gordon Trujillo ’00, was present to see her receive the award.

THEY GO WAY BACK Ashley Young ’10 and Tom Begley ’10 met in high school and sealed the deal at Mines, marrying on July 24, 2010, in Loveland, Colo. The wedding party included several Mines alumni, including Daniel ’10 and Diana (Goodrich) ’10 Houghtaling, Keith Stevens ’11, John Dibble ’11, Katie Mills ’11, Alison Brinton ’10 and Kathryn Chinn ’10. More than 50 Mines alumni attended.

WESTERN SLOPE WEDDING Danielle R. Sheffield ’08 and Eugene Uhl were married May 19, 2012, at the Adobe Creek National Golf Course in Fruita, Colo. Melissa Van Baalen ’07 was in the wedding party, and Colin Fitzgerald ’07, Mariya (Lein) Miller ’08 and Matt Frohbieter ’10 attended the ceremony.

NEW SAUDI CHAPTER In mid-December, the inaugural gathering of the first CSMAA section established in Saudi Arabia took place at a restaurant in Dhahran.

FUTURE Bequests are an important part of charitable giving at Mines. Give wings to the future by naming the Colorado School of Mines Foundation as a beneficiary of your will, trust, life insurance policy or IRA.

Discover more details by contacting:
Chris Wenger
Senior Director, Gift Planning
303.273.3275
cwenger@mines.edu
giving.mines.edu/giftplanning

MOUNTAIN WEDDING Cooper Swenson MS ’04 married Brenda James on July 17, 2011, in Breckenridge, Colo. Swenson serves on the CSMAA Board of Directors.

SMALL AND SWEET Ryan Countryman ’02 married Michelle Sprow on July 21, 2012, in Aurora, Colo., in an intimate 30-guest ceremony.

CELEBRATING SILVER IN GOLD Habash Seminbar MS ’92 of Kuala Lumpur and his wife, Ida Ekandari, celebrated their 25th wedding anniversary on February 19, 2011. Their attire is a Malay wedding costume from Central Sumatra, Indonesia.

HAPPY IN HOUSTON Jenny LaGesse MS ’05 and Larry Mortazavi were married on October 27, 2012, in Houston, Texas, where Jenny is a petrophysicist for Chevron and Larry is a psychiatry resident at Baylor School of Medicine.

HONORARY THIRD DEGREE Jim Payne ’59 (center) delivered the commencement address and was awarded an honorary doctorate in April 2012 by Golden Gate University, where he earned a master’s degree in 1974. Also photographed: GGU President Dan Angel (left) and Al Johnson, a former dean. Payne is CEO and chairman of Shona Energy in Houston, Texas.

ALUMNI: What in the world are you doing? Send us your photos and a brief description of your activities (for instance, getting married, growing your families, traveling, meeting other alumni) to magazine@mines.edu.
COLORADO SCHOOL OF MINES RECENTLY* RECEIVED 15 OUTSTANDING LEADERSHIP GIFTS AND COMMITMENTS:

The Adolph Coors Foundation contributed a total of $200,000 in support for the William K. Coors Distinguished Chair in Chemical Engineering and the Herman F. Coors Professorial Chair in Ceramics.

A bequest distribution of $252,500 from the estate of Robert J. Andersen ’54 will provide valuable support for Mines.

Steve ‘64 and Dollie Chesebro’ made a $1 million commitment to the Clear Creek Athletics Complex.

Chevron contributed $330,000 in support of several departments and initiatives through their University Partnership Program.

Jerry ’68 and Tina Grandey contributed more than $3 million to establish the Grandey University Chair in Nuclear Science and Engineering.

Halliburton committed a total of $2,041,000 to support Marquez Hall, the Halliburton Advanced Technology Fellowships Program, the Multicultural Engineering Program, the Making the Connection outreach program and the Halliburton Professional Development Series.

Al Ireson ’47 made current and deferred gifts totaling $421,000 toward the Ireson and Family Endowed Scholarship Fund and The Mines Fund.

Harold R. ’68 and Patricia M. Korell gave nearly $300,000 to the Clear Creek Athletics Complex.

Francis J. ’52 and Mary Labriola made gifts totaling $1,025,000 in support for the Labriola Endowed Scholarship Fund and The Mines Fund.

Marathon Oil Corporation gave $120,000 to support the Marathon Center of Excellence for Reservoir Studies.

Robert E. III ’68 and Ann McKee contributed $987,183 toward the Clear Creek Athletics Complex.

Newmont Mining Corporation made gifts and commitments totaling $450,000 in support for scholarships, the College of Earth Resource Sciences and Engineering, the College of Applied Science and Engineering, and the Center for Innovation in Earth Resources Science and Engineering.

Shell Oil Company contributed $104,000 in support of the Leadership Summit and several academic departments and programs.

Bequest distributions of $495,000 from the estate of Marian K. Van Kirk will support scholarships at Mines.

Jeff ’82 and Gina Vaughan contributed $100,000 to establish the Vaughan Scholarship Fund.

Other generous gifts and commitments of $25,000 and more:

- Anadarko Petroleum Corporation contributed $25,000 in support for the Petroleum Engineering Department.
- Aqua-Aerobic Systems, Inc. contributed $30,000 in support for the Advanced Water Technology Center (AQWATEC).
- ArcelorMittal contributed $50,000 to support the Metallurgical and Materials Engineering Department, Senior Design, the Multicultural Engineering Program, and the campus chapter of the Society of Women Engineers.
- Tim ’71 and Barbara Bartshe contributed $25,000 to the Bartshe Endowment, which supports graduate students in geology.
- Dan W. Bench ’58 contributed a mineral specimen to the Colorado School of Mines Geology Museum.
- Marshall C. III ’57 and Jane Crouch contributed $35,000 toward geology teaching and research, as well as scholarships for geophysics students.
- Robert P. Daniels ’85 committed $25,000 toward the Robert J. Weiner Distinguished Endowed Chair in Sedimentary and Petroleum Geology.
- A bequest distribution of $55,996 from the estate of Barbara Bartshe will support the Darden Scholarship Fund.
- Paul ’74 and Terri Don increased their funding for scholarships with an additional $56,000 commitment through their family’s Hope’s Enduring Flame Foundation.
- The Energy Cup gave $40,000 in support for the Energy Cup Scholarship Fund.
- ExxonMobil made gifts totaling $35,000 to support several departments and the Don L. and Patricia Warner Scholarship Fund.
- Tim ’70 and Mary Haddon contributed $25,000 to The Mines Fund.
- Howard E. ’76 ’77 and Cherine Janzen contributed $25,000 to The Mines Fund.
- Larry Johnson ’74 established an endowed fund benefiting physics with a $25,000 gift.
- Thomas Jorden ’80 contributed $25,000 to The Mines Fund.
- William F. ’52 and Marilyn W. Oline made a gift of $29,855 in support for the Harry C. and Sheila K. Kent Petroleum Geology Graduate Scholarship Fund.

- Oxy gave $45,000 in support for the chemical and biological engineering, geology and geological engineering and petroleum engineering departments.
- Peabody Energy gave $25,000 in support of the mining engineering department.
- With personal and memorial gifts totaling $25,000, Becky Pearson established the Bob Pearson Endowed Soccer Scholarship Fund in honor and memory of her late spouse Robert “Bob” Pearson ’59, former Mines coach, teacher and mentor.
- Andy ‘79 and Suzanne Peterson contributed $25,536 toward Mines’ Admissions to create outreach initiatives with STRIVE Preparatory Schools in Denver.
- Thomas W. ’53 and Mary M. Rollins committed $25,000 toward the Robert J. Weiner Distinguished Endowed Chair in Sedimentary and Petroleum Geology.
- Frank and Ellen Schowengerdt contributed $26,799 in to establish the Schowengerdt Endowed Scholarship Fund benefiting physics students.
- Chuck ’61 and Louanne Shultz contributed $55,000 in support for the Charles and Louanne Shultz Athletic Scholarship Endowment Fund.
- SM Energy Company committed $75,000 in continued support for Marquez Hall.
- Michael R. ’83 and Patricia K. ’83 Starzer contributed $25,000 to The Mines Fund.
- Joan V. Stratton ’74 contributed $25,775 to establish her second gift annuity at Mines.
- The Viola Vestal Coulter Foundation contributed $35,000 toward the Coulter Chair for Mineral Economics.
- Don L. ’56 ’61 and Patricia Ann Warner contributed $30,000 to establish the Warner Scholarship Fund.
- Nearly 20 former students of Dean Ramona Graves contributed gifts totaling $25,000 to establish the Ramona M. Graves Endowed Scholarship Fund in her honor.

*The CSM Foundation received the gifts and commitments listed here between 8/16/12 and 12/31/12.
“When you are sorrowful look again in your heart, and you shall see that in truth you are weeping for that which has been your delight.”
—Kahlil Gibran
refining. Immediately after graduation, he embarked on a 25-year career in the oil and gas industry. Steve is survived by his wife, Laura McArdle; daughters Victoria Suhay, Olivia Reep-Dunn and Annalie; sons Alexander Dunn and Preston Reep; his parents, Carol and John; brother Andy; and sister Karen Barnhart. His brother, Mike, preceded him in death.

Jack F. Earl ’53 of Georgetown, Texas, died July 5, 2012. Jack was born in 1927, attended Glendale College, and then earned a professional degree in geology from Mines, where he was a member of Sigma Alpha Epsilon fraternity and ROTC. He was also part of the local volunteer fire department. Jack received scholarships to Mines for basketball and football (playing quarterback), and he was also on the baseball team. He served in the U.S. Navy in World War II and as a first lieutenant in the U.S. Army Corps of Engineers in the Korean War.

Following graduation, Jack worked for Shell Oil as a petroleum engineer; he was also editor of World Oil Magazine and eventually became an independent oil operator. He is survived by his wife of 64 years, Mildred; daughters Susan Porter, Cynthia Alford, Shelby Riemer and Victoria Weil; nine grandchildren; and six great-grandchildren.

George H. Fentress ’49 of Tecamah, Neb., died June 15, 2012. Born in 1920, George served as a second lieutenant in the U.S. Army Air Corps, later graduating from Mines with a professional degree in geology. At Mines, he was a member of Beta Theta Pi fraternity, and he became an honorary member of the school’s alumni association in 1968. He served for 10 years in the Colorado House of Representatives. George was also a member of the American Association of Petroleum Geologists. He is survived by his three children, and 21 grandchildren and great-grandchildren.

William L. Harvey ’55 of Parker, Colo., died January 16, 2012. Born in 1932, he joined the Marine Corps Reserve group at Buckley Naval Air Station in 1949. A year later, he enlisted in the Marines and was sent to study telephone technology in San Diego. While earning his professional degree in geophysical engineering at Mines, Bill was a member of ROTC, Tau Beta Pi and Sigma Gamma Epsilon fraternity. In 2004, he was a member of the President’s Council. He had several careers, including geophysical engineer in Montana and quality test engineer for Martin Marietta, writing and testing specifications for the Titan I Intercontinental Missile Project. Bill also worked on the Viking Lander, the Gemini VII/VI Launch and Project Dinosaur (a military version of Skylab). Bill was predeceased by his first wife of nearly 50 years, Marilyn. He is survived by his second wife, Joanne; son William; daughters Veronica McKay, Colleen Farmer and Teresa Brandon; and six grandchildren, including Connor McKay, currently a student at Mines.

David H. Hebb MS ’73 of Spokane, Wash., died October 13, 2012. Dave was born in 1942 and grew up in Waterbury, Conn., where he attended the University of Connecticut and earned a bachelor’s degree in geology in 1964. He worked for several companies as an exploration geologist before his commission as a second lieutenant in the U.S. Army Corps of Engineers in 1968; in this capacity, he was sent to Vietnam to research mineral deposits, especially materials for road surfacing. In 1971, Dave and his wife, Barbara, moved to Golden. Two years later, he graduated with a master’s degree in mineral economics from Mines. Dave started two small businesses in Colorado—a coal bagging company and an antler buckle, button and jewelry business. He also served as a section coordinator for the alumni association. In 1987, he and his family moved to Spokane, where he searched for alternative uses for industrial waste products bound for the landfill. He is survived by his wife of 44 years; daughter Jennifer; son Nicholas; and five grandchildren.

Thomas E. Howard ’41 of Wheat Ridge, Colo., died September 29, 2012. Born in 1919, Thomas ran for the cross-country team at Mines, where he earned a professional degree in mining engineering. He worked for Anaconda Copper Mining in Montana prior to serving in the U.S. Navy from 1944 to 1946. After being discharged, he worked for St. Louis Smelting Refining, Union Pacific Railroad and the U.S. Army Corps of Engineers. In 1951, he began a 20-year stint with the U.S. Bureau of Mines in Spokane, Wash., during which he designed a patented continuous shovel loader and became the agency’s first director of mining research. In 1971, Thomas joined Joy Manufacturing as director of research in Galt, Ontario, and retired five years later to Wheat Ridge. He received the Daniel C. Jackling Award from AIME (now The American Institute of Mining, Metallurgical, and Petroleum Engineers) in 1975 for his work in rapid excavation. Thomas also invented a continuous mining machine, for which Joy Manufacturing received a patent in 1982. He was preceded in death by his wife of more than 70 years, Betty, and is survived by his son, Michael Howard, and six grandchildren.

Alex R. Jacobs ’62 of Sierra Vista, Ariz., died January 5, 2010. Born in 1932, Alex attended the U.S. Military Academy at West Point prior to earning a professional degree in mining engineering from Mines. During his career, he managed a uranium mine in Wyoming, a molybdenum mine in Idaho and a potash mine in New Mexico. He also had engineering and mining services posts in Charlotte, N.C.; Denver, Colo.; and Brisbane, Australia. Alex served as chairman of the Arizona Mining Association. He is survived by his wife of 47 years, Margaret; daughters Penny Cloonen and Annie Brady; sons Paul and Fred; and eight grandchildren.
James C. Laughry ’76 of Bartlesville, Okla., died August 23, 2012. Jim was born in 1953. At Mines, he played football and participated in track and field while earning a degree in geophysics. As an alumnus he was a member of the President’s Council in 2001. During his 33-year career in the petroleum industry as an exploration geophysicist, he became a specialist in seismic interpretation software. Jim was member of the Society for Exploration Geophysicists and wrote articles for its publications. He also volunteered as a youth mentor for the Tulsa school district. Jim is survived by his wife, Shirley; son Nelson; daughter Katelyn Bisacky; his father, Arthur; brothers David and Richard; and sister Janet Parrett.

Philip L. Lawrence ’49 of Richardson, Texas, died July 9, 2012. Born in 1923, Phil served in World War II in the 759th Field Artillery Battalion. He earned a professional degree in geological engineering from Mines and went on to work for Mobil Oil as a geophysicist from 1949 until his retirement. A member of the American Geophysical Union during his career, he remained involved in many organizations throughout his life; his favorites were Zane Grey’s West and Metallurgy and Exploration. He is survived by his wife, Beth McDonald ’98; four children, Maisri (9), Angus (6), Elsie (1) and Warren, who was born four months after his father’s death; parents Pam Nolan and Edward McDonald; and brother Joshua.

James W. Lemm ’69 of Sugar Land, Texas, died August 8, 2011. Born in 1947, Jim earned a professional degree in petroleum engineering from Mines. After spending 36 years with Union Oil in California, he retired as general manager and later served as a consultant for IHS in Houston. He was a member of the Society of Petroleum Engineers. Jim is survived by his wife of 42 years, Gail; daughter Wendy Rives; son William; grandson Phillip Rives; and brother Thomas.

Edward J. McDonald IV ’99 of Littleton, Colo., died December 11, 2011. Born in 1970, Ed earned a degree in geological engineering from Mines, where he played for the Men’s Rugby Club. At the time of his death, he was owner and operator of McDonald Engineering Services. Ed was a member of the American Society of Civil Engineers, the Association of Environmental and Engineering Geologists, and the Society for Mining, Metallurgy and Exploration. He is survived by his wife, Beth McDonald ’98; four children, Maisri (9), Angus (6), Elsie (1) and Warren, who was born four months after his father’s death; parents Pam Nolan and Edward McDonald; and brother Joshua.

Robert W. Pearson ’59 of Golden, Colo., died October 3, 2012. Born in 1933, Bob could see the “M” from his childhood home in Wheat Ridge, and his connection to the school remained close his entire life, particularly in sports. While earning his professional degree in petroleum engineering, he participated in varsity track, basketball and football, as well as numerous intramural sports. After graduating, he served as an assistant basketball coach from 1965 to 1992 (during his tenure Mines won two conference championships), tennis coach from 1965 to 1977, soccer coach from 1980 to 1998, and softball coach from 1992 to 1995. In the years 1993–1996, the men’s soccer team captured four conference titles and had a record of 39-26-2. Bob also served as director of intramural sports for 18 years and was on the staff of the Colorado School of Mines Alumni Association for seven years. At CSMAA he created the sections program, recruiting more than 40 volunteer section leaders from as far away as Lima, Peru, who organized events and kept in touch with alumni in their regions. Bob also organized the first E-Days ’Round the World event, involving celebratory alumni gatherings in 40 locations around the world on the same day. After retiring from Mines, Bob coached two senior women’s basketball teams that made it to the national championships in June 2005, with the 55–59 age group finishing sixth in the nation. He also coached a 70+ women’s team.

Active in the Golden community, Bob served on the Colorado School of Mines Credit Union Board of Directors, and the CSMAA Board of Directors 1997–1999. He was awarded a Mines Medal in 2001, named an honorary member of CSMAA in 2003, and in 2005 he received the CSMAA Outstanding Alumnus Award. He is also a member of the Colorado School of Mines Athletics Hall of Fame. Bob is survived by his wife, Becky, and daughters Alyson and Emily.
GORDON M. QUICK '65 of Punta Gorda, Fla., died September 2, 2012. Gordon was born in 1942. He earned a professional degree in metallurgy from Mines, where he was a member of Kappa Sigma fraternity and the golf team. After serving in Vietnam with the U.S. Army as a combat engineer officer, he attended the University of Kansas for one semester before leaving due to war protests on campus. He went on to spend 37 years with Pratt & Whitney in East Hartford, Conn., as a metalurgical engineer. In 2004, he retired to Punta Gorda, where he played golf regularly, and served as a director of the Burnt Store Lakes Property Owners Association from 2009 to 2012. Gordon was a 1999 member of the Mines President’s Council. He is survived by his wife of 42 years, Linda; son David; and two grandsons.

WILLIAM S. RANSOM '60 of Oro Valley, Ariz., died August 29, 2012. Born in 1931, Bill joined the U.S. Navy after high school. After earning his professional degree in mining engineering from Mines, he traveled the world as a mining engineer for 40 years. In 1973, he moved to the Tucson area, where he served as section vice president for CSMAA. Bill is survived by his wife of almost 50 years, Emily; daughters Susan, Pat, Barbara, Debbie, Becky and Joan; sons Eric and Howard; 21 grandchildren; and 19 great-grandchildren.

JENNIFER M. RONHOVDE '08 of Broomfield, Colo., died October 20, 2012. Born in 1986, Jennifer earned a degree in petroleum engineering from Mines. She married Logan Ronhovde '11 five days after being diagnosed with leukemia (see story at mines magazine.com/2881/). Jennifer was a reservoir engineer and then operations engineer for Pioneer Natural Resources. She is survived by her husband; parents Ken and Shelley Rotramel; brother Steven; uncle Brian Smith '85; and cousin Erik Smith '03. Her grandfather, William R. Smith '48, died in February 2012 (see Mines' fall 2012 issue, p. 46).

JOE T. TAYLOR ’52 of Alamo, Calif., died August 30, 2012. Born in 1926, Joe enlisted in the U.S. Army upon his graduation from high school in 1944. He briefly attended Alabama and Auburn Universities until he turned 18, when he attended Officers Candidate School. Commissioned as a second lieutenant, Joe served in Germany until 1946. At Mines, he was a member of the 1951 football team (inducted into the Athletics Hall of Fame in 1999), and graduated with a professional degree in mining engineering. He graduated from the Stanford Sloan Program in 1969, and was a member of Mines’ Resource Fund International Development Committee from 1975 to 1985. For 32 years, Joe worked for Kaiser Steel in Utah, New Mexico, Australia and California, retiring as VP of coal mining operations in 1984. He is survived by his wife of 59 years, Hannoria; son Thomas; daughters Terry and Leslie; and four grandchildren.

JOHN E. TUTTLE '49 of Brenham, Texas, died August 11, 2012. Born in 1926, John attended Stanford University while in the U.S. Army during World War II. At Mines, he was a member of Tau Beta Pi honor fraternity and earned a professional degree in petroleum engineering. He worked as a licensed petroleum engineer for Shell Oil for more than 30 years, during which time he lived in five states and The Hague, Netherlands. After retiring at age 56, John spent the next three decades traveling with his wife, Dolores, throughout the United States and internationally, including golf vacations in Ireland and Scotland. A member of Mines’ President’s Council for more than a decade, he also belonged to the Society of Petroleum Engineers. In June 2012, Joe was predeceased by his wife of 60 years. He is survived by his son, John; daughters Donna Holt and Joy Stroud; and six grandchildren.

JOHN H. WYATT ’50 of Denver, Colo., died November 4, 2012. Born in 1925, Jack earned a professional degree in mining engineering from Mines. In addition to his career as a mining engineer with Phelps Dodge, he served in the U.S. Army Reserve, retiring with the rank of captain. He was avidly devoted to music, and as a key organizer of the CSMAA Centennial celebration in 1995, he led the alumni band. A member of the Mines President’s Council for three years, he was also a lifelong Mason. He is survived by his children, John and Karen; two grandchildren; and two great-grandchildren.

—Compiled and edited by Amie Chitwood and Nancy Webb

ALSO REMEMBERED

<table>
<thead>
<tr>
<th>Name</th>
<th>Graduation Year</th>
<th>Date of Death</th>
<th>Remembered Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEWTON M. ANDERSON</td>
<td>MS '55</td>
<td>January 4, 2005</td>
<td></td>
</tr>
<tr>
<td>J. THOMAS BERNARD</td>
<td>'66</td>
<td>January 13, 2011</td>
<td></td>
</tr>
<tr>
<td>CARL L. BIENIEWSKI</td>
<td>'52</td>
<td>April 4, 2010</td>
<td></td>
</tr>
<tr>
<td>W. JEFFERSON FROST JR.</td>
<td>'64</td>
<td>February 3, 2012</td>
<td></td>
</tr>
<tr>
<td>JOHN H.W. HAIG</td>
<td>'59</td>
<td>February 3, 2009</td>
<td></td>
</tr>
<tr>
<td>FRANK G. HORINO</td>
<td>'44, MS '51</td>
<td>February 8, 2009</td>
<td></td>
</tr>
<tr>
<td>BURT R. KRAMER</td>
<td>'42</td>
<td>March 25, 1994</td>
<td></td>
</tr>
<tr>
<td>WALTER B. LEVY</td>
<td>'48</td>
<td>March 14, 2008</td>
<td></td>
</tr>
<tr>
<td>DELWYN J. LOW</td>
<td>'45</td>
<td>June 13, 2008</td>
<td></td>
</tr>
<tr>
<td>GALEN L. MAYER</td>
<td>'62</td>
<td>August 20, 2008</td>
<td></td>
</tr>
<tr>
<td>ELMER T. MUSSelman</td>
<td>'48, MS '49</td>
<td>January 27, 2007</td>
<td></td>
</tr>
<tr>
<td>DOUGLAS L. PEARCE</td>
<td>'42</td>
<td>May 19, 2010</td>
<td></td>
</tr>
<tr>
<td>ROBERT L. PURSWELL</td>
<td>'73</td>
<td>January 4, 2009</td>
<td></td>
</tr>
<tr>
<td>HAROLD A. ROGERS</td>
<td>'42</td>
<td>October 17, 1989</td>
<td></td>
</tr>
<tr>
<td>JAMES H. WILLIAMS</td>
<td>'48</td>
<td>October 6, 2006</td>
<td></td>
</tr>
<tr>
<td>SHAMSUZ ZAMAN</td>
<td>MS '55, MS '56</td>
<td>May 15, 2011</td>
<td></td>
</tr>
</tbody>
</table>

Colorado School of Mines Magazine 47
Turn your savings into earnings. Let’s talk.

Cooper Swenson, AAMS®
Financial Advisor
14142 Denver West Parkway
Bldg 51, Ste 170
Lakewood, CO 80401
303-278-0733
www.edwardjones.com
Matheson Mining Consultants, Inc.

VIBRATION CONSULTING

- Seismic Monitoring and Modeling
- Liability Protection
- Public Relations
- Regulatory Compliance
- Seismograph Lease and Sales
- Inspections & Damage Claim Investigations
- Blast Design, Seminars...

www.mathesonmining.com
2801 Youngfield St., Ste. 171, Golden, CO 80401-2266
(303) 456-5638 Fax (303) 456-5639

Miller and Lents, Ltd.
International Oil and Gas Consultants
Stephan M. Hamburg (P.E. ’77)
909 Fannin Street, 13th Floor
Houston, TX 77010
Phone: 713-308-0348
Fax: 713-654-9914
shamburg@milleralents.com

Real Estate

For Lease
Professional Office Space

1010 Tenth Street
Golden, CO 80401

4,700 Square Feet
Located in Historic Golden
Walking Distance from Downtown
Across from Clear Creek/Walking Path
Two Conference Rooms
Ample Parking

John Wright: 303-808-9594

Software

Software Engineering Software
- Database Management
- Maps, Cross Sections & Drill Logs
- Modeling & Statistics
- Open-Pit & Seam Mining
- Interactive 3D Visualization
- And more, all in one software package
- Complete Training, Support & Consulting

Michael Norred ’78
PO Box 18820, Reno, NV 89511
www.techbase.com - 303-980-5300

GEC Drilling & Grouting, Inc.
Providing drilling and grouting services utilized by the mining and heavy civil construction industries

Shafts/Declines - Underground
Galleries - Limited Access
Core Drilling - Consolidation
Pre-drilling - Water cut-off
Structural Applications - Cementitious and Chemical

Brad Crenshaw, PE, PG ’03 – General Manager
Phone (678) 296-9901 – e-mail: bocrenshaw@gmail.com
www.drill-grout.com

Nichols
FRAC SAND PLANTS INSTALLED & ERECTED
Since 1916
Nichols Machinery
Robert Nichols ’66
rnichols@clingroup.com

Natural Resources

NexGen Resources Corporation
Charles S. McNeil, P.E.
President
3600 S. Parker Road/Fifth Floor
Tel. 303/751-9230
Fax 303/751-9210
Aurora, CO 80014
email: csmcneil@nexgen-group.com

Petroleum

Servipetrol Ltd.
International Petroleum Consultants
Independent Oil and Gas Producers
ROBERTO AGUILERA
M.Eng. ’71, Ph.D. ’77
Naturally Fretured Reservoirs
Log Interpretation • Well Test Analysis
Performance Forecasts
Reservoir Modeling
Economics
Petroleum Short Courses
903 – 19th Avenue SW, Suite 502
Calgary, Alberta, Canada T2T 0H8
Tel: (403) 266-2535 Fax: (403) 264-8297
http://www.servipetrol.com
e-mail: aguilera@servipetrol.com

Engineered Solution
Minesight: The Essential Software for Mine Productivity

See The Smarter Solution

XX2i DUAL KITS INCLUDE:
- 2 Frames (Black Gloss + Demi Tortoise)
- 5 Lenses (Laser Smoke, Laser Brown, Racing Orange, Racing Yellow + Performance Clear)
- Protective Hard Case for All Frames & Lenses
- 2 Microfiber Carrying/Cleaning Pouches & 3 Lens Pouches

Visit our complete line:
www.xx2i.com

Go to: www.xx2i.com
enter code: XX2IMINES before checkout to get 40% OFF & FREE Shipping!
Our feature about the missing CU Boulder bell in the fall 2012 issue prompted one alumnus to email us these photos (see Inbox, p. 4), taken the night before the bell reappeared in 1950. His father and two uncles were in on the original heist, and two of the three are shown here helping to engrave the M. (No, we’re still not naming names.)
Much like the engineers, operators and physicists who shed light on ways to harness clean energy from power plants, donors to The Mines Fund equip students with state-of-the-art technology that reinforces forward thinking through an experiential Mines education.

Thank you for energizing future generations through your contributions to The Mines Fund. Your annual support makes a powerful difference for the university - fueling scholarships for more than 80 percent of students, driving student life initiatives and attracting world-renowned professors who ultimately energize the Mines experience.
All alumni are invited to come home to Colorado School of Mines! Reconnect and rediscover your alma mater during three days of Colorado-style fun.

Featuring special programming for these groups:
- Classes of 1935–1962—Golden Miners
- Class of 1953—60th Reunion
- Class of 1963—50th Reunion
- Class of 1968—45th Reunion
- Class of 1973—40th Reunion
- Class of 1978—35th Reunion
- Department of Physics alumni
- Former members of band and choir

Registration now open; sign up by April 9 and save $25! minesalumniweekend.com